A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane

중공사형 분리막에 대한 직접접촉식 막분리 공정의 수치해석

  • Shin, Ho-Chul (Department of Chemical Engineering, Seoul National University of Technology & Science) ;
  • Chung, Kun-Yong (Department of Chemical Engineering, Seoul National University of Technology & Science)
  • 신호철 (서울과학기술대학교 화학공학과) ;
  • 정건용 (서울과학기술대학교 화학공학과)
  • Received : 2010.12.20
  • Accepted : 2010.12.25
  • Published : 2010.12.30

Abstract

Membrane distillation (MD) is a separation process which higher vapor pressure components are evaporated in mixed liquid solution through hydrophobic membrane with 0.1 or $0.5{\mu}m$ pore size. In this study, direct contact membrane distillation process for hollow fiber module were interpreted numerically using the "COMSOL Multiphysics" software. The variables for the system were temperatures and flow rates of lumen and shell side solutions. The permeate flux increased from 1.0 to $3.8L/m^2{\cdot}hr$ as temperature of the feed solution for lumen increased from 30 to $50^{\circ}C$. However the effect of shell solution temperature on permeate flux was relatively low. Also, the optimum velocity of lumen feed was obtained at 0.15 m/s ($Re_L=135$) by considering MD permeate flux as well as operating pressure loss.

막증류는 소수성이 강한 0.1 내지 $0.5{\mu}m$의 정밀여과막을 통하여 휘발도가 상대적으로 큰 성분을 증발시켜 분리하는 방법이다. 본 연구에서는 중공사형 분리막을 이용한 직접접촉식 막증류 공정을 "COMSOL Multiphysics" 프로그램을 이용하여 수치해석 하였으며 유체의 유입온도, lumen 및 shell side 공급 유속의 변화로 인한 투과량의 변화를 해석하였다. Lumen 공급용액의 온도가 30 에서 $50^{\circ}C$까지 증가할 경우 막증류 투과량은 1.0에서 $3.8L/m^2{\cdot}hr$ 까지 증가하였으나 shell 유체온도 영향은 상대적으로 낮았다. 또한 lumen 공급유속에 따른 막증류 투과량과 운전 압력손실을 고려할 경우 0.15 m/s ($Re_L=135$)일 때 가장 효율적임을 확인하였다.

Keywords

References

  1. K. Y. Chung, "Membrane distillation of the aqueous glucose solution", Membrane Journal, 10(4), 230 (2000).
  2. K. Y. Chung and J. P. Kim, "Energy saving membrane technology", A-Jin Press Co., Korea (2010).
  3. Y. M. Yang, K. J. Kim, and S. J. Moon, "A study on desalination using direct contact membrane distillation", Membrane Journal, 16(4), 214 (2006).
  4. H. W. Cho and W. C. Shin, "The prospect of membrane distillation", Membrane Journal, 7(2), 57 (1997).
  5. A. M. Bertasa, G. Besana, A. Ghielmi, and V. Arcella, "Fluoropolymers in membrane applications", Membrane Journal, 17(2), 118 (2007).
  6. S. Bouguecha, R. Chouikh, and M. Dhahbi, "Numerical study of the coupled heat and mass transfer in membrane distillation", Desalination, 152, 245 (2002).
  7. V. A. Bui, L. T. T. Vu, and M. H. Nguyen, "Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules", J. Membr. Sci., 353, 85 (2010). https://doi.org/10.1016/j.memsci.2010.02.034
  8. J. M. Smith, H. C. Van Ness, and M. M. Abbott, "Chemical engineering thermodynamics", sixth edition, McGraw Hill, New York (2002).
  9. T. C. Chen, C. D. Ho, and H. M. Yeh, "Theoretical modeling and experimental analysis of direct contact membrane distillation", J. Membr. Sci., 330, 279 (2009). https://doi.org/10.1016/j.memsci.2008.12.063