• Title/Summary/Keyword: Feed processing

Search Result 513, Processing Time 0.023 seconds

PRESENT STATUS OF RICE PRODUCTION AND UTILIZATION IN CHINA

  • Fan, Zhihong
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.13-21
    • /
    • 2003
  • China is the largest rice producer in the world, with about 28 million hectares rice-planting area. Most of the rice is consumed domestically as daily staple food, with a small proportion consumed as feed and deep-processed products. The low elastic elasticity and low profit of rice production which hampers the development of the industry, is due to the low quality of rice grain, low processing level and undeveloped rice processing technique. Promotion of high-quality species, effective quality control, adoption of modem Processing techniques, My use of low-quality indica rice, and utilization of specialty rice are considered as priorities in rice industry.

  • PDF

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.

Effect of Corn Processing Method on Degradability and Fermentation Characteristics in Rumen of Hanwoo (옥수수 가공 방식이 반추위 소화특성에 미치는 영향)

  • Jun Sang Ahn;Dong Hun Kang;Bo Hye Park;Ki Yong Chung
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.127-137
    • /
    • 2024
  • This study was conducted to investigate effect of corn flake and corn ground on nutrient digestibility and fermentation characteristics of rumen in Hanwoo. The animals used were three Hanwoo cows implanted with ruminal fistula. Corn were categorized in 2 groups based on the corn processing method: Ground and Flake. The rumen digestibility of dry matter, starch, nitrogen free extract and non fiber carbohydrates were increased in flake compared to ground from 3 to 24 hours of incubation(P<0.05). The pH of rumen was lower in the flaked treatment than ground treatment at 3 hours after incubation, but average pH was no significantly difference between treatments. The average acetic acid, propionic acid and butyric acid were significantly increased in the flaked treatments compared to the ground treatment (P<0.05). Thus, flake processing can improve the carbohydrate availability of corn in the rumen and increase feed value.

Influence of substituting steam-flaked corn for dry rolled corn on feedlot cattle growth performance when cattle are allowed either ad libitum or restricted access to the finishing diet

  • Gonzalez-Vizcarra, Victor Manuel;Plascencia, Alejandro;Ramos-Avina, Daniel;Zinn, Richard Avery
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1563-1567
    • /
    • 2017
  • Objective: The influence of substituting steam-flaked corn (SFC) for dry rolled corn (DRC) on feedlot cattle growth performance and dietary net energy when cattle are allowed either ad libitum or 2-h restricted access to the finishing diet was evaluated. Methods: Treatment effects were tested using 96 crossbred steers ($251{\pm}2kg$) during the initial 56 d of the finishing phase. Cattle were blocked by weight and randomly assigned within blocks to 16 pens (4 pens/treatment). Bunk space was sufficient (41 cm/head) to allow all steers access to the feed bunk at the same time. Treatments consisted of two finishing diets containing (dry matter basis) 77.1% corn grain processed by dry rolling (density = 0.50 kg/L) or steam flaking (density = 0.36 kg/L). Cattle were fed twice daily at 06:00 and 14:00 h, allowing for approximately 5% residual. In the case of restricted feeding, steers were allowed access to feeders for 1 h following each feeding, after which residual feed was withdrawn. Results: There were no treatment interactions on dry matter intake (DMI), average daily gain (ADG), gain efficiency (G:F), or dietary net energy (NE). Restricting feed access time reduced (p<0.01) feed intake, and hence, ADG. Substitution of SFC for DRC increased (p<0.01) ADG, feed efficiency (G:F), and estimated dietary NE, without affecting DMI. Based on tabular net energy of maintenance ($NE_m$) value (2.18 Mcal/kg) for DRC, the estimated $NE_m$ value for SFC using the replacement technique, averaged 2.44 Mcal/kg; an improvement of 10.7%. The ratio of observed-to-expected dietary NE was not affected by feed access time. Conclusion: Substitution of SFC for DRC in finishing diets for feedlot cattle enhanced ADG, gain efficiency, and the NE value of the diet. Although restriction of feed access time depressed DMI and ADG, it did not affect the comparative benefit of steam flaking toward enhancement of ADG, G:F, and dietary NE.

Recovery and Utilization of Proteins and Lipids from the Washing Wastewater in Marine Manufacture by Isoelectric Point Shifting Precipitation Method;4. Utilization of the Recovered Protein Fractions as the Alternative Feed of Fish Meal. (수산가공공장폐액의 등전점이동 응집처리에 의한 유용성분재회수이용;4. 회수단백질의 어분 대체 사료로서의 이용)

  • Kim, Gwang-Woo;Kim, Ga-Hyeon;Ueo, Myung-Hee;Kim, Ok-Seon;Cho, Soon-Yeong
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.832-838
    • /
    • 2008
  • Mackerel water-soluble protein fraction produced by washing the mackerel meat were concentrated by isoelectric point shifting precipitation process, and the concentrates were utilized as the alternative feed of fish meal. In the 1st aquaculture diet experiment for Israel common carp, the feed conversion ratio decreased in proportion to the rise in the percentage of the recovered protein containing a residual lipid, which was added to the fish meal. It was supposed that the low feed efficiency was because of lipid oxidation in the recovered protein fraction. In addition, 2nd aquaculture diet experiment for Israel common carp was conducted after removing the oxidized lipid in the recovered protein fish meal. When a portion of the fish meal was substituted by the recovered protein devoid of the residual lipid, the feed conversion ratio increased in proportion to the amount of the substitute being added to the fish meal. Therefore, the recovered protein fraction of the mackerel washing wastewater from mackerel processing factory could be used as the alternative feed of fish meal.

Effect of extrusion of soybean meal on feed spectroscopic molecular structures and on performance, blood metabolites and nutrient digestibility of Holstein dairy calves

  • Berenti, Ammar Mollaei;Yari, Mojtaba;Khalaji, Saeed;Hedayati, Mahdi;Akbarian, Amin;Yu, Peiqiang
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.855-866
    • /
    • 2021
  • Objective: Performance and physiological responses of dairy calves may change by using extruded soybean meal (ESBM) instead of common soybean meal (SBM) in starter feed. The aims of the current study were i) to determine the effect of extrusion processing of SBM on protein electrophoretic size, fourier transform infrared spectroscopy (FTIR) structures and Cornell Net Carbohydrate and Protein System (CNCPS) protein subfractions and ii) to determine the effect of substitution of SBM with ESBM in starter feed of Holstein heifer calves during pre and post-weaning on performance, nutrient digestibility, and blood metabolites. Methods: The SBM was substituted with ESBM at the level of 0%, 25%, 50%, 75%, and 100% (dry matter [DM] basis). Fifty heifer calves (initial body weight 40.3±0.63 kg) were used for the study. After birth, animals were fed colostrum for 3 days and then they were fed whole milk until weaning. Animals had free access to starter feed and water during the study. Results: Extrusion of SBM decreased electrophoretic protein size and increased rapidly degradable true protein fraction, changed FTIR protein and amide II region. With increasing level of ESBM in the diet, starter intake increased quadratically during the pre-weaning period (p<0.05) and body weight, DM intake and average daily gain increased linearly during the post-weaning and the whole study period (p<0.05). Tbe DM and crude protein digestibilities at week 14 and blood glucose and beta hydroxybutyric acid increased linearly in calves as the level of ESBM increased in the diet (p<0.05). Conclusion: Dairy calves performance and physiological responses were sensitive to SBM protein characteristics including electrophoretic size, FTIR structures and CNCPS protein fractions.

Role and functions of micro and macro-minerals in swine nutrition: a short review

  • Vetriselvi Sampath;Shanmugam Sureshkumar;Woo Jeong Seok;In Ho Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.479-489
    • /
    • 2023
  • Livestock production depends on the utilization of nutrients, and when this is accomplished, there is accelerated momentum toward growth with a low cost-to-feed ratio. Public concern over the consumption of pork with antibiotic residues in animals fed antibiotic growth promoters (AGP) has paved the way for using other natural additives to antibiotics, such as herbs and their products, probiotics, prebiotics, etc. Numerous feed additives are trending to achieve this goal, and a classic example is vitamins and minerals. Vitamins and minerals represent a relatively small percentage of the diet, but they are critical to animal health, well-being, and performance; both play a well-defined role in metabolism, and their requirements can vary depending on the physiological stage of the animals. At the same time, the absence of these vitamins and minerals in animal feed can impair the growth and development of muscles and bones. Most commercial feeds contain vitamins and trace minerals that meet nutrient requirements recommended by National Research Council and animal feeding standards. However, the potential variability and bioavailability of vitamins and trace elements in animal feeds remain controversial because daily feed intake varies, and vitamins are degraded by transportation, storage, and processing. Accordingly, the requirement for vitamins and minerals may need to be adjusted to reflect increased production levels, yet the information presented on this topic is still limited. Therefore, this review focuses on the role and function of different sources of minerals, the mode of action, the general need for micro and macro minerals in non-ruminant diets, and how they improve animal performance.

Effect of Processing Cotton Straw Based Complete Diet with Expander-extruder on Performance of Crossbred Calves

  • Kirubanath, K.;Narsimha Reddy, D.;Nagalakshmi, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1572-1576
    • /
    • 2003
  • A growth trial of 180 days was conducted on 18 crossbred calves (6-9 months, $73.48{\pm}6.52kg)$ by randomly allotting to two complete diets and a conventional diet (6 in each group). The complete diets were formulated containing 40 per cent cotton straw, one processed in mash form and other subjected to expander-extruder pelletization (EEP). These two complete diets were compared with conventional system of feeding under which concentrate mixture and cotton straw were fed separately in a 60:40 ratio. The calves on EEP complete diet consumed more (p<0.01) DM in comparison to other two groups. The DMI per 100 kg body weight was similar among all the diets. The ADG was significantly (p<0.01) higher in calves fed EEP complete diets (815.4 g) followed by mash (627.0 g) in comparison to conventional diet (464.9 g). The DM intake per kg metabolic body weight was higher (p<0.01) on complete diet than conventional diet. The intakes of DCP (p<0.05), TDN (p<0.01), and ME (p<0.01) per kg metabolic body weight were significantly higher on EEP complete diet in comparison to mash and conventional diet. The water intake per kg DM intake was comparable among all the diets. The efficiency of DM utilisation was higher p (<0.05) on EEP complete diet (5.84) in comparison to conventional diet (7.41), whereas on mash diet it was intermediate (6.68). The efficiency of DCP utilization was similar in mash and EEP complete diet fed groups, which was higher (p<0.05) than that of the conventional diet. Expander-extrusion though increased the cost of production it reduced the cost of feed per unit live weight gain by 12.28% in comparison to its mash form and by 16.76% when concentrate and cotton straw were fed separately. The results indicated that blending of cotton straw along with concentrates in a complete diet increased the palatability of the straw in comparison to conventional system and expander extruder processing of cotton straw based complete diet gave better growth performance and may form an economic ration for growing crossbred calves.

Odor control of Foodwaste Treatment Facilities (음식물류폐기물처리시설의 악취관리대책에 관한 연구)

  • Kim, Sung-Bum;Oh, Gil-Jong;Kim, Kye-Yeun;Jung, Myung-Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.2
    • /
    • pp.71-82
    • /
    • 2006
  • This study was carried out to assess and analyze the overall problems of the facilities in recycling and treating of foodwaste on the basis of the unit operation facilities. It proposes effective alternatives for the high profitable management that can meet the regulation of the facilities. The study is composed of several parts including a collection of academic reports, field studies regarding the facilities operated by local government and the private sector, the analysis on odor samples from compost facilities and processing facilities for animal feed from foodwaste. Twenty facilities were surveyed on the field to find out the existing problems and to compare between facilities. Several facilities didn't meet the governmental regulation on some processes, especially the stages of input, storage, odor control and the qualities of final products under the unit equipment operation. The analysis on the odors from the phases of input, shredding and fermentation of a compost facility and processing facilities for feed, the odors from shredding equipments were higher in concentration than the others. The Major odors from the composting facility contained hydrogen sulfide ($H_2S$), methyl mercaptan ($CH_3{SH}$), Dimethyl sulfide ($(CH_3)_2S$) and Ammonia ($NH_3$) and the major odors from the animal feed facility contained methyl mercaptan ($CH_3{SH}$), Trimethylamine ($(CH_3)_3N$) and Acetaldehyde ($CH_3CHO$).

  • PDF

Preparation of Seaweed Calcium Microparticles by Wet-grinding Process and their Particle Size Distribution Analysis (초미세습식분쇄공정의 공정변수에 따른 해조칼슘의 입자크기 분석)

  • Han, Min-Woo;Youn, Kwang-Sup
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.269-274
    • /
    • 2009
  • The main objective of this study was to establish optimum condition of wet grinding process for manufacturing microparticulated seaweed calcium. Process parameters such as concentration of forming agent, rotor speed, bead size, feed rate, and grinding time were adapted during wet-grinding of seaweed calcium. The particle size range of the raw seaweed calcium was 10-20 $\mu$m. The calcium particles were reduced to under 1 $\mu$m as nano scale after grinding. Gum arabic was suitable for forming agent and 5%(w/v) concentration was the most effective in grinding efficiency. A wet-grinding process operated at 4,000 rpm rotor speed, 0,4 mm bead size, and 0.4 L/hr feeding rate, respectively, produced less than 600 mm(>>90%)-sized particles. In batch systems, 8 cycles of grinding showed higher efficiency, but 20 min of grinding time in continuous processing was more efficient to reduce particle size than the batch processing. Based on the result, the optimum conditions of the wet grinding process were established: operation time of 20 minutes, rotor speed of 4,000 rpm, bead size of 0.4 mm, feed rate of 40 mL/min and 30% mixing ration with water. The size of the resulting ultra fine calcium particles ranged between 40 and 660 mm.