• Title/Summary/Keyword: Feed Particle

검색결과 192건 처리시간 0.026초

한우 사육에 이웅한 황토(풍화토)의 입도분리에 따른 광물성분 및 화학적 특성 (Mineralogy and Chemical Properties according to Particle Size Separation of Hwangto (Reddish Residual Soil) used in Feeding of Cattle)

  • 황진연;박현진;양경희;이효민
    • 한국광물학회지
    • /
    • 제15권1호
    • /
    • pp.33-43
    • /
    • 2002
  • 전북 익산지역의 한우사육에 사용한 황토를 gravel, sand, silt, coarse clay, fine clay으로 입도분리하여 각 분리된 시료에 대해서 광물성분 및 화학적 특성 등을 검토하였다 광물성분의 분석 결과, gravel과 sand에는 석영과 장석이 주로 포함되고, clay와 silt떼는 카오린광물 및 일라이트 등의 점토광물이 우세하며, 산화철광물은 fine clay에서 주로 포함된다. 주성분원소에서는 입경이 작은 시료일수록 Al, Fe, $H_2O$의 함량이 증가하여 점토광물의 함량 증가와 잘 일치하였다. 미량성분원소에서는 Zn, Rb, Sr, Ba, Pb등이 입도에 따라 큰 함량 차이를 보였다. Ba, Sr은 장석이 많은 sand에 다량 함유되어 주로 장석에 존재하는 것으로 나타났다 본래 황토 시료에 상당량 함유된 Pb 및 Sm은 입도분리된 시료에는 적은 함량을 나타내어, 입도 분리 과정에서 제거되기 쉬운 형태로 존재하는 것으로 보인다. Nb, La, Th, Ce 등은 silt 시료에 가장 많은 함량을 보였다. 이들 이외의 거의 모든 원소에서 점토광물의 함량이 많이 함유된 작은 입도시료에서 미량원소의 함량이 증가하는 경향 나타나 이들 대부분이 점토광물내에 주로 존재하는 것으로 보인다. 교환성양이온 함량과 산 및 알카리에 의한 용탈 원소 함량 등은 입자가 작은 점토시료에서 높게 나타났다. 따라서 가축사료 등 황토의 활용에 있어서 천연상태의 황토를 그대로 사용하는 것보다는 입도 분리에 의한 정제를 행한 미립의 점토분을 주로 사용하는 것이 황토의 이온교환성, 원소 용탈성, 흡착성, 흡수성 등의 특성을 향상시킬 수 있을 것으로 나타났다.

BP와 PSO형 신경회로망을 이용한 선삭작업에서의 표면조도와 전류소모의 예측 (Prediction of Surface Roughness and Electric Current Consumption in Turning Operation using Neural Network with Back Propagation and Particle Swarm Optimization)

  • ;오수철
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.65-73
    • /
    • 2015
  • This paper presents a method of predicting the machining parameters on the turning process of low carbon steel using a neural network with back propagation (BP) and particle swarm optimization (PSO). Cutting speed, feed rate, and depth of cut are used as input variables, while surface roughness and electric current consumption are used as output variables. The data from experiments are used to train the neural network that uses BP and PSO to update the weights in the neural network. After training, the neural network model is run using test data, and the results using BP and PSO are compared with each other.

A multi-crack effects analysis and crack identification in functionally graded beams using particle swarm optimization algorithm and artificial neural network

  • Abolbashari, Mohammad Hossein;Nazari, Foad;Rad, Javad Soltani
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.299-313
    • /
    • 2014
  • In the first part of this paper, the influences of some of crack parameters on natural frequencies of a cracked cantilever Functionally Graded Beam (FGB) are studied. A cantilever beam is modeled using Finite Element Method (FEM) and its natural frequencies are obtained for different conditions of cracks. Then effect of variation of depth and location of cracks on natural frequencies of FGB with single and multiple cracks are investigated. In the second part, two Multi-Layer Feed Forward (MLFF) Artificial Neural Networks (ANNs) are designed for prediction of FGB's Cracks' location and depth. Particle Swarm Optimization (PSO) and Back-Error Propagation (BEP) algorithms are applied for training ANNs. The accuracy of two training methods' results are investigated.

The Effects of Extrusion Cooking and Milling on the Instant Properties of Wheat Powders

  • Tanhehco, E.J.;Ng, P.K.W.
    • Food Science and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.758-765
    • /
    • 2005
  • Instant powders that only require mixing with water prior to consumption can be produced by extrusion for use in products such as instant beverages. Both extrusion processing conditions and particle size of powder are important to end-product characteristics. In this study, a twin-screw extruder was used under various processing conditions (feed moisture, barrel temperature, and screw speed) to produce extrudates from soft wheat flour, which were ground to powders with particle size ranges of less than 93, 93-145, and $145-249\;{\mu}m$. Effects of adding soy lecithin to wheat flour before extrusion were also investigated. Water absorption, solubility, suspension viscosity, and dispersibility of wheat powders were related to specific. mechanical energy measured during extrusion. Powder particle size was important to instant properties, especially ease of dispersal in water and stability to sedimentation. Addition of lecithin significantly improved dispersibility of powders.

Effect of Particle Size of Forage in the Dairy Ration on Feed Intake, Production Parameters and Quantification of Manure Index

  • Moharrery, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권4호
    • /
    • pp.483-490
    • /
    • 2010
  • The objectives of this study were to measure particle size and evaluate the effect of increasing alfalfa hay particle size on production characteristics in lactating Holstein dairy cows. Ninety multiparous Holstein cows in early to mid-lactation were randomly assigned in a complete randomized design for a 30-day period. Animals were offered one of the three diets, which were identical in energy, protein, and chemical composition, but differed only in particle size of alfalfa hay. The treatments were A) total mixed ration (TMR) in which only fine chopped alfalfa hay was incorporated in the ration, B) the same diet in which half of the alfalfa hay was fine chopped and incorporated in the mixed ration and half was long hay and offered as a top dressing, and C) the same diet with long hay alfalfa offered as a top dressing. Distribution of particle size of rations was determined through 20,000, 8,000 and 1,000 ${\mu}m$ sieves. The new method of quantitative determination of manure index was examined for each cow on different treatments. The geometric mean length of particle size in the rations was 5,666, 9,900 and 11,549 ${\mu}m$ for treatments A, B and C, respectively. Fat corrected milk (4%), milk fat percentage and production were significantly different (p<0.05) in treatment A versus B and C (fat corrected milk (FCM, 4%)) 28.3 vs. 35.2 and 32.3 kg/d, fat percentage 2.89, 4.04 and 3.62; but the change of ration particle size had no significant effect on milk production (p>0.05). Blood concentration of cholesterol in treatment A was significantly higher (p<0.05) than treatment B and C (181.0 vs. 150.0 and 155.2 mg/dl). Manure index in treatment C was significantly different (p<0.05) from treatment B (15.86 vs. 17.67). Based on these experimental findings, it is concluded that an increase in the ration particle size can increase milk fat percentage due to providing more physically effective fiber, which in turn could effect changes in manure consistency.

분말송급장치의 개조에 의한 미세$5\mu\textrm{m}$ $Al_2O_3$분말의 송급 특성개선 및 플라즈마 용사조건에 따른 코팅층의 특성분석 (Improvement of Powder Feeding Characteristics of Fine$5\mu\textrm{m}$ $Al_2O_3$ Powder by Modification of the Powder Feeding Systems and Characterization of the Coating Layer depending on Plasma Spraying Conditions)

  • 설동욱;김병희;정민석;임영우;서동수
    • Journal of Welding and Joining
    • /
    • 제15권1호
    • /
    • pp.116-124
    • /
    • 1997
  • A scope of this study is to establish the optimum plasma spray conditions for fine ($5\mu\textrm{m}$) $Al_2O_3$ powder. However, the flowability of the $Al_2O_3$ powder is not so good because of irregular particle shape and fine particle size. Therefore, powder feeding system was modified by 1) change of powder feeding line material from polymer to copper 2) shorten the powder feeding tube length 3) heating the powder feeding system to $80^{\circ}C$4) vibrating the powder feeding line continuously, in order to feed the fine powder homogeneously. The homogeneous powder feeding conditions were obtained with the modified powder feeding system by controlling the powder carrier gas flow and the powder flow rate indicator. The best plasma spraying conditions for the fine $Al_2O_3$ powder were found out as 40kw gun power, 80 g/min. powder feed rate and 50 mm working distance after characterizing the microstructure, hardness and wear loss of the $Al_2O_3$ coating layer.

  • PDF

Crossflow 방식 응집-정밀여과 공정의 케이크층 저감 메커니즘 (Cake Reduction Mechanism in Coagulation-Crossflow Microfiltration Process)

  • 김수한;박희경
    • 상하수도학회지
    • /
    • 제17권4호
    • /
    • pp.519-527
    • /
    • 2003
  • Cake layer in crossflow microfiltration(CFMF) can be reduced by coagulation, enhancing membrane flux. This is because enlarging particle size by coagulation increases shear-induced diffusivity and the back-transport of rejected particles. However it is known that the enlarged particles are disaggregated by the shear force of the pump while passing through it. This study is to look at the disaggregation in relation with cake layer reducation. Kaolin and polysulfon hollow fiber microfilter are used for experiment. The reduction of cake resistance by coagulation is observed in a range of 17% to 53% at the various coagulation conditions. The particle size analysis results of the experiments show that aggregated particles in feed are completely disaggregated by pump but re-aggregation of particles occurs in membrane. This suggestes that the re-aggregation of particles is critical to cake reduction and flux enhancement, since the aggregated particles are completely broken. The mechanisms for re-aggregation in membrane are the same with those for coagulation in feed tank. Charge neutralization is better for CCFMF than sweep flocculation although it has two drawbacks in operation.

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • 제4권3호
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.

Investigating the effect of changing parameters in the IEC device in comparative study

  • H. Ghammas;M.N. Nasrabadi
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.292-300
    • /
    • 2024
  • Kinetic simulations have been performed on an Inertial Electrostatic Confinement Fusion (IECF) device. These simulations were performed using the particle-in-cell (PIC) method to analyze the behavior of ions in an IEC device and the effects of some parameters on the Confinement Time (CT). CT is an essential factor that significantly contributes to the IEC's performance as a nuclear fusion device. Using the PIC method, the geometry of a two-grided device with variable grid radius, the number of cathode grid rings, variable pressure and different dielectric thickness for the feed stalk was simulated. In this research, with the development of previous works, the interaction of particles was simulated and compared with previous results. The simulation results are in good agreement with the previous results. In these simulations, it was found that with the increase of the dielectric thickness of the feed stalk, the electric field was weakened and as a result, the confinement time was reduced. On the other hand, with the increase of the cathode radius, the confinement time increased. Using the results, an IEC device can be designed with higher efficiency and more optimal CT for ions.

초미세습식분쇄공정의 공정변수에 따른 해조칼슘의 입자크기 분석 (Preparation of Seaweed Calcium Microparticles by Wet-grinding Process and their Particle Size Distribution Analysis)

  • 한민우;윤광섭
    • 산업식품공학
    • /
    • 제13권4호
    • /
    • pp.269-274
    • /
    • 2009
  • 습식분쇄의 최적조건을 얻고자 부형제 종류, 농도, 습식 분쇄시 rotor speed, bead size, feed rate, 분쇄회수를 달리하여 분쇄한 결과, 부형제로는 gum arabic을 사용하여 5%의 농도로 첨가할 때 가장 좋은 분쇄효과를 나타내었다. Rotor speed를 달리하여 습식분쇄한 결과, rotor speed가 증가할수록 좋은 결과를 나타내어 4,000 rpm에서 가장 우수한 것으로 나타났다. 원료와 직접 부딪혀 분쇄를 하게 되는 bead는 0.4 mm의 크기를 사용하였을 때 가장 작은 사이즈로 분쇄되는 것으로 나타났다. 분쇄가 이루어지는 chamber내에 원료를 공급하는 비율에 따른 결과에서는 40 L/h 의 속도로 공급했을 때 가장 작은 입도분포를 보였다. 분쇄회수에 따른 영향은 횟수에 따라서는 8회 이상으로 분쇄하였을때 0.6 $\mu$m이하의 입도분포가 90% 이상으로 나타나 10회를 분쇄하였을때 가장 좋은 효과를 나타내었다. 연속운전과 비연속운전의 비교에서는 연속운전이 더 효율적이었으며 부형제 종류에 따른 영향은 gum arabic을 첨가하여 분쇄하였을때 가장 우수한 결과를 나타내었다. 따라서 적절한 농도와 종류의 부형제 사용과 rotor speed, bead size, feed rate, 용매와의 혼합비의 최적공정을 수립한 습식 분쇄기술로 초미세액상칼슘의 제조가 가능하였고, 습식분쇄기술을 식품가공기술로 활용할 수 있는 가능성을 확보하였다.