• 제목/요약/키워드: Feed Forward Back-propagation

검색결과 82건 처리시간 0.022초

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

A Study on the Neuro-Fuzzy Control and Its Application

  • So, Myung-Ok;Yoo, Heui-Han;Jin, Sun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.228-236
    • /
    • 2004
  • In this paper. we present a neuro-fuzzy controller which unifies both fuzzy logic and multi-layered feed forward neural networks. Fuzzy logic provides a means for converting linguistic control knowledge into control actions. On the other hand. feed forward neural networks provide salient features. such as learning and parallelism. In the proposed neuro-fuzzy controller. the parameters of membership functions in the antecedent part of fuzzy inference rules are identified by using the error back propagation algorithm as a learning rule. while the coefficients of the linear combination of input variables in the consequent part are determined by using the least square estimation method. Finally. the effectiveness of the proposed controller is verified through computer simulation for an inverted pole system.

역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구 (The Structure of Boundary Decision Using the Back Propagation Algorithms)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

Classification System of EEG Signals During Mental Tasks

  • Seo Hee Don;Kim Min Soo;Eoh Soo Hae;Huang Xiyue;Rajanna K.
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.671-674
    • /
    • 2004
  • We propose accurate classification method of EEG signals during mental tasks. In the experimental task, the tasks of subjects show 3 major measurements; there are mathematical tasks, color decision tasks, and Chinese phrase tasks. The classifier implemented for this work is a feed-forward neural network that trained with the error back-propagation algorithm. The new BCI system is proposed by using neural network. In this system, tr e architecture of the neural network is composed of three layers with a feed-forward network, which implements the error back propagation-learning algorithm. By applying this algorithm to 4 subjects, we achieved $95{\%}$ classification rates. The results for BCI mathematical task experiments show performance better than those of the Chinese phrase tasks. The selection time of each task depends on the mental task of subjects. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or yes/no discrimination methods.

  • PDF

신경망을 이용한 실시간 고장 진단 시스템 (On-Line Fault Diagnosis System using Neural Network)

  • 김문성;유승선;소정훈;곽훈성
    • 한국통신학회논문지
    • /
    • 제26권11C호
    • /
    • pp.75-84
    • /
    • 2001
  • 본 논문에서는 신경망을 이용한 실시간 고장 검출 및 진단(FDD : Fault Detection and Diagnosis) 시스템을 제안한다. 제안된 시스템은 공조 시스템(FDD : Air Handling Unit)에서 발생 가능한 여러 고장들을 검출하고 진단할 수 있다. 고장 검출 및 진단 기법으로 3층 구조의 전방향(feed-forward) 신경망을 사용하였고, 여기에 사용된 학습 방법은 역전파(back-propagation) 학습 알고리즘이다. 공조 시스템에 적용된 실시간 고장 검출 및 진단 시스템은 비주얼 C++와 비주얼 베이직을 사용하여 구현하였다. 제안된 고장 검출 및 진단 시스템을 실제 운전 중인 공조 시스템에 적용하여 실험하였고, 정확한 고장 검출 및 진단이 수행됨을 실험 결과로서 입증하였다.

  • PDF

Device Discovery using Feed Forward Neural Network in Mobile P2P Environment

  • 권기현;변형기;김남용;김상춘;이형봉
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권3호
    • /
    • pp.393-401
    • /
    • 2007
  • P2P systems have gained a lot of research interests and popularity over the years and have the capability to unleash and distribute awesome amounts of computing power, storage and bandwidths currently languishing - often underutilized - within corporate enterprises and every Internet connected home in the world. Since there is no central control over resources or devices and no before hand information about the resources or devices, device discovery remains a substantial problem in P2P environment. In this paper, we cover some of the current solutions to this problem and then propose our feed forward neural network (FFNN) based solution for device discovery in mobile P2P environment. We implements feed forward neural network (FFNN) trained with back propagation (BP) algorithm for device discovery and show, how large computation task can be distributed among such devices using agent technology. It also shows the possibility to use our architecture in home networking where devices have less storage capacity.

  • PDF

웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교 (Global Function Approximations Using Wavelet Neural Networks)

  • 신광호;이종수
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

Neural Netwotk Analysis of Acoustic Emission Signals for Drill Wear Monitoring

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.254-262
    • /
    • 2008
  • The objective of the proposed study is to produce a tool-condition monitoring (TCM) strategy that will lead to a more efficient and economical drilling tool usage. Drill-wear monitoring is an important attribute in the automatic cutting processes as it can help preventing damages of the tools and workpieces and optimizing the tool usage. This study presents the architectures of a multi-layer feed-forward neural network with back-propagation training algorithm for the monitoring of drill wear. The input features to the neural networks were extracted from the AE signals using the wavelet transform analysis. Training and testing were performed under a moderate range of cutting conditions in the dry drilling of steel plates. The results indicated that the extracted input features from AE signals to the supervised neural networks were effective for drill wear monitoring and the output of the neural networks could be utilized for the tool life management planning.

Efficient weight initialization method in multi-layer perceptrons

  • Han, Jaemin;Sung, Shijoong;Hyun, Changho
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1995년도 추계학술대회발표논문집; 서울대학교, 서울; 30 Sep. 1995
    • /
    • pp.325-333
    • /
    • 1995
  • Back-propagation is the most widely used algorithm for supervised learning in multi-layer feed-forward networks. However, back-propagation is very slow in convergence. In this paper, a new weight initialization method, called rough map initialization, in multi-layer perceptrons is proposed. To overcome the long convergence time, possibly due to the random initialization of the weights of the existing multi-layer perceptrons, the rough map initialization method initialize weights by utilizing relationship of input-output features with singular value decomposition technique. The results of this initialization procedure are compared to random initialization procedure in encoder problems and xor problems.

  • PDF

인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구 (Crack Identification Using Hybrid Neuro-Genetic Technique)

  • 서명원;심문보
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF