• Title/Summary/Keyword: Feed Back Loop

Search Result 35, Processing Time 0.027 seconds

Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building (Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어)

  • 김상범;윤정방
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

Improved Transmitter Power Efficiency using Cartesian Feedback Loop Chip

  • Chong, Young-Jun;Lee, Il-Kyoo;Oh, Seung-Hyeub
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • The Cartesian loop chip which is one of key devices in narrow-band Walky-Talky transmitter using RZ-SSB modulation method was designed and implemented with 0.35 Um CMOS technology. The reduced size and low cost of transmitter were available by the use of direct-conversion and Cartesian loop chip, which improved the power efficiency and linearity of transmitting path. In addition, low power operation was possible through CMOS technology. The performance test results of transmitter showed -23 dBc improvement of IMD level and -30 dEc below suppression of SSB characteristic in the operation of Cartesian loop chip (closed-loop). At that time, the transmitting power was about 37 dBm (5 W). The main parameters to improve the transmitting characteristic and to compensate the distortion in feed back loop such as DC-offset, loop gain and phase value are interfaced with notebook PC to be controlled with S/W.

Feedback Loop Design for Micro Gyroscope

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.4-39
    • /
    • 2002
  • This paper presents a design and implementation of a PID feedback control loop for micro gyroscope. The feedback control loop improves the gyroscope performance such as linearity, bandwidth, and bias stability for micro gyroscope which is basically a high-Q system and exhibits a low performance with an open loop control. The designed and implemented feed-back control loop is applied to the SNU-Bosch MEMS gyroscope to demonstrate the improvement with the feedback control loop. The bandwidth is improved to 60Hz from 25Hz of open loop control. The linearity becomes 0.5% from 1%. The bias stability is improved to 0.03 deg/sec from 0.06 deg/sec.

  • PDF

System dynamics of scanning tunneling microscope unit

  • Yamada, Hikaru;Endo, Toshiro;Tsunetaka-Sumomogi;Fujita, Toshizo;Morita, Seizo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.794-797
    • /
    • 1988
  • G. Binnig and H. Rohrer introduced the Scanning Tunneling Microscope (STM) in 1982 and developed it into a powerful and not to be missed physical tool. Scanning tunneling Microscopy is a real space surface imaging method with the atomic or subatomic resolution in all three dimensions. The tip is scanned over the surface by two piezo translators mounted parallel (X-piezo and Y-piezo) to the surface and perpendicular to each other. The voltage applied to the third piezo (Z-piezo) translator mounted perpendicular to the surface to maintain the tunneling current through the gap at a constant level reflects then the topography of the surface. The feed back control loop for the constant gap current is designed using the automatic control technique. In the designing process of the feed back loop, the identification of the gap dynamics is very complex and has difficulty. In this research, using some suitable test signals, the system dynamics of the gap including the Z-piezo are investigated. Especially, in this paper, a system model is proposed for the gap and Z-piezo series system. Indicial response is used to find out the model. The driving voltage of the Z-piezo and the tunneling current are considered as input and output signals respectively.

  • PDF

Improvement of transient characteristics of SEPIC rectifier (SEPIC을 이용한 고역율 정류회로의 과도응답특성 개선)

  • Joung Seok-Eon;Lee Kyo-Beum;Hyun Dong-Seok;Song Joong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.525-529
    • /
    • 2001
  • A pulse frequency control(PFM) method for single-phase SEPIC-type rectifier is described in this paper. In the SEPIC rectifier, a relationship between the output power and the respective switching frequency is investigated to establish the control scheme of PFM. The propsed control method is provided with a feed-forward control loop of the output load as well as a feed-back control loop of the output voltage. The simulation results show good dynamic responses and unity power-factor operation.

  • PDF

Experiment Based Dynamic Analysis for High Accuracy Control of Feed System (이송계 고정도 제어를 위한 동특성 실험분석)

  • Kim, Shung-Hyun;Jeong, Jae-Hyun;Kim, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.729-737
    • /
    • 2009
  • This paper introduces the machine tools feed system, which can be optimized the control's performance through simulation and the adjustment of the mechanical components. One method simulates the frequency response of the speed-loop with the design value using the MATLAB application, so that all of the interpolation axis can be equal to the response bandwidth, resulting in a high accuracy rate. The other method sees the mechanical component being adjusted by analyzing the results of various experiments. Lastly, this client's program is able to change the parameters that are related to the FFD, as well as the parameters in the friction compensation of the OPEN-CNC.

A Study on Dynamic Models for Ports and Regional Economy (항만과 지역경제간의 동태적 모델에 관한 연구)

  • 오세용;여기태;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.15-23
    • /
    • 2000
  • If a system such as a port and regional economy has a large boundary and complexity, the system's substance is considered as a black box, forecast accuracy will be very low. Futhermore various components in a port and regional economy exert significant influence on each other. To copy with these problem the form of structure models were introduced by using SD model. This study has the issue of simplifying the regional economic effects of the port as contributing to raising the regional income. The regional economic effects of port have various indirect ones except for this. So, SD(System Dynamics) was presented, and applied to simulate port and regional economy.

  • PDF

The Implementation of Train Diagram Modeling in the Open-loop Metro Line (Open-loop Metro Line에서의 열차 운전도 모델링의 구현)

  • Hong, H.S.;Yoo, K.K.;Lee, T.S.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.527-530
    • /
    • 1995
  • In this paper, traffic modeling and control design was considered to analyze and improve the stability of train diagram in the open-loop Metro line. A complete discrete-event traffic model describing the natural instability of open-loop metro line is analyzed. The traffic stability properties are introduced and easy-to-implement state feed back traffic control algorithms are designed, which satisfied with system stability.

  • PDF

Performance Enhancement of RMRAC Controller for Permanent Magnet Synchronous Motor using Disturbance Observer (외란관측기를 이용한 영구자석 동기전동기에 대한 참조모델 견실적응 제어기의 성능개선)

  • Jin, Hong-Zhe;Lim, Hoon;Lee, Jang-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.67-69
    • /
    • 2007
  • PMSM (Permanent Magnet Synchronous Motor) current control is a most inner loop of electromechanical driving systems and it plays a foundation role in the hierarchy's control loop of several mechanical machine systems. In this paper, a simple RMRAC control scheme for the PMSM is proposed in the synchronous frame. In the synchronous current model, the input signal is composed of as a calculated voltage by adaptive laws and system disturbances. The gains of feed-forward and feed-back controller are estimated by the proposed e-modification methods respectively, where the disturbances are assumed as filtered current tracking errors. After the estimation of the disturbances from the tracking errors, the corresponding voltage is fed forward to control input to compensate for the disturbances. The proposed method is robust to high frequency disturbances and has a fast dynamic response to time varying reference current trajectory. It also shows a good real-time performance duo to it's simplicity of control structure. Through the simulations considering several cases of external disturbances and experimental results, efficiency of the proposed method is verified

  • PDF

A study on detection of composite errors and high precision cutting method by numerical control of two-dimensional circular interpolation in machining centers (Machining center에서 2차원 원호보간의 복합오차 검출 및 수치제어에 의한 고정밀도 가공방법에 관한 연구)

  • Kim, J.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.117-126
    • /
    • 1994
  • This paper describes an application step of a $R^{-{\theta}}$ method which measures circular movements in machining centers. The detection of composite errors of circular movements and a high precision cutting method in machining centers were investigated by the analysis of data measured by $R^{\theta }$method which can detect the rotating angle and is applicable to variable measuring radius. When the error by squareness error and unbalance of position-loop-gain were mixed, the detection method of each error was proposed. Although the errors by squarenss error and backlash compensation were mixed, the errors by squareness error be detected. If the errors by unbalance of position-loop-gain and backlash compensation were mixed, the errors by unbalance of position-loop-gain could not detected. A high precision cutting mehod, which uses the NC program compensated by using feed-back data from error measured by the $R^{\theta }$method, was proposed.

  • PDF