• Title/Summary/Keyword: Fed batch

Search Result 451, Processing Time 0.03 seconds

Two Phase Algorithm in Optimal Control

  • Park, Chungsik;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.252-255
    • /
    • 1999
  • Feed rate in the fed-batch reactor is the most important control variable in optimizing the reactor performance. Exact solution can be obtained only for limited cases of simple reactor. The complexity of the model equations makes it extremely difficult to solve fur the general class of system models. Evolutionary programming method is proposed to get the information of the profile types, and the final profile is calculated by that information. The modified evolutionary programming method is used to get the more optimal profiles and it is demonstrated that proposed method can solve a wide range of optimal control problems.

  • PDF

Fermentation Strategies for Recombinant Protein Expression in the Methylotrophic Yeast Pichia pastoris

  • Zhang, Senhui;Inan, Mehmet;Meagher, Michael M.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.275-287
    • /
    • 2000
  • Fermentation strategies for recombinant protein production in Pichia pastoris have been investigated and are reviewed here. Characteristics of the expression system, such as phenotypes and carbon utilization, are summarized. Recently reported results such as growth model establishment, app58lication of a methanol sensor, optimization of substrate feeding strategy, DOstat controller design, mixed feed technology, and perfusion and continuous culture are discussed in detail.

  • PDF

Ethanol Production with Glucose/Xylose Mixture by Immobilized Pichia stipitis (고정화 Pichia stipitis 를 이용한 글루코오스/자일로오스 혼합당으로부터 에탄올 생산)

  • Shin, Hyun-Seok;Kang, Seong-Woo;Lee, Sang-Jun;Jang, Eun-Ji;Suh, Young-Woong;Kim, Seung-Wook
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • To increase the production of ethanol by using sugar from lignocellulosic biomass, pentose and hexose have to be fermented simultaneously by yeast. The effects of mixed sugar and nitrogen on ethanol production by immobilized Pichia stipitis KCCM 12009 were investigated. When optimal mixed sugar and nitrogen concentration were 5% (Glucose/Xylose = 3:1) and 1%, respectively, ethanol concentration produced by immobilized P. stipitis was 19-20 g/L. In repeated fed-batch by immobilized P. stipitis, all glucose was consumed very quickly at 1-3% mixed sugar concentration. But, xylose consumption was decreased as the mixed sugar concentration increased. Also, ethanol (5.6 g/L) was stably produced and ethanol production rate was 0.13 g/$L{\cdot}h$ in immobilized cell reactor (ICR) with 1% mixed sugar (Glucose/Xylose = 3:1) as feeding media.

Recombinant Glargine Insulin Production Process Using Escherichia coli

  • Hwang, Hae-Gwang;Kim, Kwang-Jin;Lee, Se-Hoon;Kim, Chang-Kyu;Min, Cheol-Ki;Yun, Jung-Mi;Lee, Su Ui;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1781-1789
    • /
    • 2016
  • Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.

Production of Recombinant Trehalose Synthase from Thermus caldophilus GK24 (재조합 내열성 트레할로스 합성효소의 생산)

  • Choi, Jae-Youl;Cha, Wol-Suk;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.298-301
    • /
    • 2006
  • A gene(GeneBank AF 135796) coding for a trehalose synthase from Thermus caldophilus GK24 was cloned into Escherichia coli K12 using five vector systems. The constitutive expression system(pHCETS) which shows the highest trehalose synthase activity from flask culture of recombinant E. coli was selected for the production of trehalose from maltose. For the shake flask culture, the final dry cell weight was 0.9 g/L and the trehalose synthase activity was 25 U/mL. Fed-batch culture of recombinant E. coli harboring plasmid pHCETS which uses the glycerolas a carbon source was performed in jar fermentor: the dry cell weight of 20 g/L and the trehalose synthase activity of 13.7 U/mL were attained in 48 h.

The Production of Sodium Gluconate by Aspergillus niger (Aspergillus niger를 이용한 글루콘산 나트륨의 생산)

  • 이현철;정봉우
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • Sodium gluconate was produced by neutralization of gluconic acid formed during the submerged culture fermentation of glucose with Aspergillus niger ACM 7. The fermentation characteristics of Aspergillus niger ACM 7 were investigated quantitatively according to the change of the initial glucose concentrations and the initial pHs of fermentation broth. The maximum specific growth rate was estimated to be $0.20hr^{-1}$ at 95g/$\ell$ of initial glucose concentration. The maximum fermentability of sodium gluconate was 95% at the initial glucose concentration of 26g/$\ell$. However, the maximum sodium gluconate productivity was 1.18g/$\ell$/hr when the initial glucose concentration was 110g/$\ell$. The optimum pH was found to be 5.5 for both the cell growth and the sodium gluconate production. With optimized culture conditions, the productivity of sodium gluconate in a fed-batch culture(production fermentor, 16,000$\ell$) increased up to 7.1g/$\ell$/hr.

  • PDF

Synthesis of Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] by Recombinant Escherichia coli from Whey (재조합 대장균에 의한 유청으로부터 Poly[3-hydroxybutyrate-co-3-hydroxyvalerate] 합성)

  • 김범수;이상엽
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.404-407
    • /
    • 2003
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhydroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV) from whey. The 3HV fraction could be increased by acetic acid induction and oleic acid supplementation in flask cultures of recombinant E. coli GCSC6576. With the pH-stat fed-batch culture of recombinant E. coli LS5218, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4%, and 6.26 mol%, respectively in 39 h.

Genome-wide Analysis and Control of Microbial Hosts for a High-level Production of Therapeutic Proteins

  • Kim, Sung-Geun;Park, Jung-Hwan;Lee, Tae-Hee;Kim, Myung-Dong;Seo, Jin-Ho;Lim, Hyung-Kwon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.230-232
    • /
    • 2005
  • The formation of insoluble aggregation of the recombinant kringle fragment of human apolipoprotein(a), rhLK8, in endoplasmic reticulum was identified as the rate-limiting step in the rhLK8 secretion in Saccharomyces cerevisiae. To analyze the protein secretion pathway, some of yeast genes closely related to protein secretion was rationally selected and their oligomer DNA were arrayed on the chip. The expression profiling of these genes during the induction of rhLK8 in fermentor fed-batch cultures revealed that several foldases including pdi1 gene were up-regulated in the early induction phase, whereas protein transport-related genes were up-regulated in the late induction phase. The coexpression of pdi1 gene increased rhLK8-folding capacity. Hence, the secretion efficiency of rhLK8 in the strain overexpressing pdi1 gene increased by 2-fold comparing in its parental strain. The oligomer DNA chip arrayed with minimum number of the genes selected in this study could be generally applicable to the monitoring system for the heterologous protein secretion and expression in Saccharomyces cerevisiae. With the optimization of fed-batch culture conditions and the alteration of genetic background of host, we obtained extracellular rhLK8 at higher yields than with Pichia pastoris systems, which was a 25-fold increased secretion level of rhLK8 compared to the secretion level at the initiation of this study.

  • PDF

Poly-$\beta$-Hydroxybutyrate Produced by Pink-Pigmented Facultative Methylotrophic Bacterium from Methanol (분홍색 통성 메탄올 자화세균이 생산하는 Poly-$\beta$-Hydroxybutyrate)

  • 송미연;이재호;이용현
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.273-279
    • /
    • 1990
  • For poly- $\beta$ -hydroxybutyrate (PHB) production, a pink-pigmented facultative methylotrophic bacterium (PPFM) P-10 was newly isolated from soils through methanol-enrichment culture. The optimal medium composition for cell growth was 1.0% (vlv) of methanol as carbon source and l.Og/l of ,TEX>$NH_4Cl$, equivalent to C/N ratio of 13.2 at pH 7.0 and $30^{\circ}C$. To investigate the optimal condition for YHB accumulation, two-stage culture technique was adopted; first stage for cell growth and second stage for accumulation of PHB providing unbalanced growth conditions. The optimal PHB accumulation was 1.0% (vIv) of methanol and 0.26gll of $NH_4Cl$, C/N of 50.8 at pH 6.0. To overcome methanol inhibition on cell growth, intermittent feeding fed-batch culture technique was employed, and the cell concentration as high as 14gll with 40% of PHB was achieved. The purified PHB was identified using IR and $1^H NMR$ as homopolymer of 8hydroxybutyric acid. The absorption spectrum of extracted pink colored microbial pigment was alsa investigated.

  • PDF

Enhanced Production of Avermectin B1a with Streptomyces avermitilis by Optimization of Medium and Glucose Feeding (배지 및 유가식 회분배양 최적화에 의한 Streptomyces avermitilist 의 Avermectin B1a 생산성 향상)

  • 이병규;김종균;강희일;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The effect of phosphate on the production of avermectin B1a was studied. Response surface methodology was applied to optimize the concentration of organic nitrogen sources. The portion of B1b in total avermectins was decreased from 5.8% to 3.0% by the addition of 1.5 g/ι inorganic phosphate to the production medium. Among organic nitrogen sources, soybean meal was the most effective on avermectin biosynthesis. Results showed that B1a productivity was increased by 44.8% in a laboratory scale fermenter cultivation of Streptomyces avermitilis YA99-40 through fed-batch process. A maximal B1a productivity was obtained by repeated 30 and 20 g/ι of glucose feeding at 136 and 206 hour, respectively. The B1a productivity was increased by 86.3% and the proportion of B1a in the total avermectins was improved from 38% to 45% with respect to the control process. These results would be very useful for enhancing productivity of B1a in an up-scaled processes.

  • PDF