• Title/Summary/Keyword: Fed batch

Search Result 451, Processing Time 0.034 seconds

Automation of Glutamic Acid Fermentation (글루탐산 발효공정의 자동화)

  • Park, S.H.;Hong, K.T.;You, S.J.;Lee, J.H.;Bae, J.C.
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.202-204
    • /
    • 1983
  • A strategy for the automation of glutamic acid fermentation has been developed by the use of $CO_2$ analyzer together with a controller. It was found that a linear relationship existed between growth and $CO_2$ level in the exit gas. Therefore penicillin addition at an appropriate biomass concentration to excrete glutamate could be achieved automatically. In addition, an automatic batch feeding method (fed-batch culture) provided a means of overcoming substrate inhibition effects on growth and glutamic acid production in batch culture, thereby increasing productivity and product yield.

  • PDF

Microbial Communities of Activated Sludge Performing Enhanced Biological Phosphorus Removal in a Sequencing Batch Reactor Supplied with Glucose

  • Jeon, Che-Ok;Seung, Han-Woo;Park, Jong-Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.385-393
    • /
    • 2003
  • Microbial communities were analyzed in an anaerobic/aerobic sequencing batch reactor (SBR) fed with glucose as a sole carbon source. Scanning electron microscopy (SEM) showed that tetrad or cuboidal packet bacteria dominated the microbial sludge. Quinone, slot hybridization, and 165 rRNA gene sequencing analyses showed that the Proteobacteria beta subclass and the Actinobacteria group were the main microbial species in the SBR sludge. However, according to transmission electron microscopy (TEM), the packet bacteria did not contain polyphosphate granules or glycogen inclusions, but only separate coccus-shaped bacteria contained these, suggesting that coccus-shaped bacteria accumulated polyphosphate directly and the packet bacteria played other role in the enhanced biological phosphorus removal (EBPR). Based on previous reports, the Actinobacteria group and the Proteobacteria beta subclass were very likely responsible for acid formation and polyphosphate accumulation, respectively, and their cooperation achieved the EBPR in the SBR operation which was supplied with glucose.

Effect of 3,3',4',5-Tetrachlorosalicylanilide on Reduction of Excess Sludge and Nitrogen Removal in Biological Wastewater Treatment Process

  • Rho, Sang-Chul;Nam, Gil-Nam;Shin, Jee-Young;Jahng, Deok-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.

Adverse Effect of the Methanotroph Methylocystis sp. M6 on the Non-Methylotroph Microbacterium sp. NM2

  • Jeong, So-Yeon;Cho, Kyung-Suk;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1706-1715
    • /
    • 2018
  • Several non-methylotrophic bacteria have been reported to improve the growth and activity of methanotrophs; however, their interactions remain to be elucidated. We investigated the interaction between Methylocystis sp. M6 and Microbacterium sp. NM2. A batch co-culture experiment showed that NM2 markedly increased the biomass and methane removal of M6. qPCR analysis revealed that NM2 enhanced both the growth and methane-monooxygenase gene expression of M6. A fed-batch experiment showed that co-culture was more efficient in removing methane than M6 alone (28.4 vs. $18.8{\mu}mol{\cdot}l^{-1}{\cdot}d^{-1}$), although the biomass levels were similar. A starvation experiment for 21 days showed that M6 population remained stable while NM2 population decreased by 66% in co-culture, but the results were opposite in pure cultures, indicating that M6 may cross-feed growth substrates from NM2. These results indicate that M6 apparently had no negative effect on NM2 when M6 actively proliferated with methane. Interestingly, a batch experiment involving a dialysis membrane indicates that physical proximity between NM2 and M6 is required for such biomass and methane removal enhancement. Collectively, the observed interaction is beneficial to the methanotroph but adversely affects the non-methylotroph; moreover, it requires physical proximity, suggesting a tight association between methanotrophs and non-methylotrophs in natural environments.

Bioprocess Considerations for Production of Secondary Metabolites by Plant Cell Suspension Cultures

  • Chattopadhyay, Saurabh;Farkya, Sunita;Srivastava, Ashok K.;Bisaria, Virendra
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.138-149
    • /
    • 2002
  • Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stage etc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.

Clostridium acetobutylicum B18를 이용한 부탄올 발효에서 pH 및 extra nutrient가 부탄올 생성에 미치는 영향연구

  • Yun, Ji-Yong;Kim, Tae-Yong;Park, Chan-El;Park, Chang-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.243-246
    • /
    • 2000
  • Clostridium acetobutylicum Bl8 can produce a large amount of butanol by control characteristics such as glucose concentration, pH and extra nutrient. It is known that this stain is potentially useful in simultaneous ABE fermentation-seperation system because of its low acid $production^{1).}$ The purpose of this study is to determine optimal condition of fermentation to produce maximum butanol in batch and fed-batch by strain Bl8.

  • PDF

Mass Transfer Effects in Xanthan Gum Fermentation (Xanthan Gum 발효에 있어서 물질전달의 영향)

  • 임병연;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.277-282
    • /
    • 1989
  • Xanthan gum is a biopolymer produced by Xanthomonas campestris. In xanthan gum fermentation, the fermentation broth changes to highly viscous non-Newtonian fluid as xanthan gum concentration increases. Maximum xanthan gum concentration is limited by high viscosity of the broth since mass transfers of nutrient and oxygen are inhibited. Int this study the mass transfer effects were investigated in batch and fed-batch fermentations at various agitation speeds and by separate oxygen transfer experiments. Xanthan gum production rate was observed to be largely dependent on oxygen transfer coefficient; while cell growth rate was not affected highly by this factor.

  • PDF

Effect of Media Packing Ratio on the Sequencing Batch Biofilm Reator (연속회분식 생물막 반응기에서 여재 충진율의 영향)

  • 김동석;박민정
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.791-799
    • /
    • 2003
  • This study was carried out to get more operational characteristics of the sequencing batch biofilm reactors with media volume/reactor volume ratio of 15 %, 25 % and 35 %. Experiments were conducted to find the effects of the media packing ratio on organic matters and nutrients removal. Three laboratory scale reactors were fed with synthetic wastewater. During studies, the operation mode was fixed. The organic removal efficiency didn't show large difference among three reactor of different packing media ratios. However, from the study results, the optimum packing media ratios for biological nutrient removal was shown as 25%. The denitrifying PAOs could take up and store phosphate using nitrate as electron acceptor.

Serratia 배양에 의한 Serrapeptase 생성의 유도와 억제에 관한 연구

  • 노용택
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.408-413
    • /
    • 1997
  • It was studied in order to improve the yield of serrapeptase production in fermentation that organic nitrogen sources play important roles not only as inducer, repressor and activator, but also nitrogen sources. From the investigation of the effect of Na-caseinate on the induction of serrapeptase production, it was elucidated that real inducer was leucine and strong repressor was cysteine, which were produced through hydrolysis of proteins. Serrapeptase production was strongly induced by Na-caseinate in culture time 12 hrs, but was weakly induced before and after that time. Therefore fed batch culture where partial amount of Na-caseinate is added in 12 hrs, is better than batch culture where total amount of Na-caseinate is added at the beginning. Cysteine, methionine, MgSO$_{4}$, and so on, sulfur-containing materials, repressed the serrapeptase production. In the addition of mineral salts, chlorinated salts is better than sulfated salts because of sulfur repression. The synergic effect of soybean meal with Na-caseinate on the serrapeptase production resulted from Mn$^{2+}$ contained in soybean meal, of which the optimal concentration is 4 mM in enzyme production.

  • PDF

Simultaneous Saccharification and Pervaporative Fermentation of Cellulosic Biomass (투고증발을 이용한 섬유성바이오매스의 동시당화 및 추출발효)

  • 공창범;윤현희
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • Application of pervaporative extraction of ethanol to simultaneous saccharification and fermentation(SSF) of cellulose was investigated. From batch experiments, optimum cellulose substrate and enzyme loadings were found to be 10% and 15 IFPU/g cellulose, respectively. The cellulose conversion was lowered in fed-batch system due to the ethanol accumulation. The activity of the yeast Saccharomyces uvarum used in this study was significantly reduced at ethanol concentrations above around 40 g/L. From pervaporation experiments using PDMS membrane, ethanol was efficiently separated at 38$^\circ C$ and 10 mmHg of a down stream pressure. The pervaporation unit with 240 cm$^2$ of surface area was combined into the SSF reactor. The continuous removal of ethanol by pervaporation during SSF resulted in an improved cellulose conversion. Within the scope of this experiment, ethanol yields in the pervaporative SSF and simple SSF were 68.3% and 56.6%, respectively. The permeate flux for SSF broth pervaporation was about one-half that for the pervaporation of aqueous ethanol solution. Accordingly, the development of a membrane with higher ethanol selectivity and flux will increase the feasibility of this technology.

  • PDF