• 제목/요약/키워드: Feature-based classification

검색결과 1,337건 처리시간 0.027초

The Facial Expression Recognition using the Inclined Face Geometrical information

  • Zhao, Dadong;Deng, Lunman;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.881-886
    • /
    • 2012
  • The paper is facial expression recognition based on the inclined face geometrical information. In facial expression recognition, mouth has a key role in expressing emotions, in this paper the features is mainly based on the shapes of mouth, followed by eyes and eyebrows. This paper makes its efforts to disperse every feature values via the weighting function and proposes method of expression classification with excellent classification effects; the final recognition model has been constructed.

  • PDF

Collaborative Filtering and Genre Classification for Music Recommendation

  • Byun, Jeong-Yong;Nasridinov, Aziz
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.693-694
    • /
    • 2014
  • This short paper briefly describes the proposed music recommendation method that provides suitable music pieces to a listener depending on both listeners' ratings and content of music pieces. The proposed method consists of two methods. First, listeners' ratings prediction method is a combination the traditional user-based and item-based collaborative filtering methods. Second, genre classification method is a combination of feature extraction and classification procedures. The feature extraction step obtains audio signal information and stores it in data structure, while the second one classifies the music pieces into various genres using decision tree algorithm.

적응적 특징요소 기반의 지문인식에 관한 연구 (A Study on Adaptive Feature-Factors Based Fingerprint Recognition)

  • 노정석;정용훈;이상범
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1799-1802
    • /
    • 2003
  • This paper has been studied a Adaptive feature-factors based fingerprints recognition in many biometrics. we study preprocessing and matching method of fingerprints image in various circumstances by using optical fingerprint input device. The Fingerprint Recognition Technology had many development until now. But, There is yet many point which the accuracy improves with operation speed in the side. First of all we study fingerprint classification to reduce existing preprocessing step and then extract a Feature-factors with direction information in fingerprint image. Also in the paper, we consider minimization of noise for effective fingerprint recognition system.

  • PDF

특징 순위 방법을 이용한 혈소판 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증 분류 (Feature Ranking for Detection of Neuro-degeneration and Vascular Dementia in micro-Raman spectra of Platelet)

  • 박아론;백성준
    • 전자공학회논문지CI
    • /
    • 제48권4호
    • /
    • pp.21-26
    • /
    • 2011
  • 특징 순위 방법은 데이터에 대한 정보와 관련된 특징을 구별하는데 유용하게 사용된다. 본 논문에서는 혈소판으로부터 측정된 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증의 분류에 특징 순위를 이용하는 방법을 제안하였다. 퇴행성 뇌신경 질환인 알츠하이머병(Alzheimer's disease)과 파킨슨병(Parkinson's disease) 그리고 혈관성 인지증(vascular dementia)을 유도한 실험용 쥐의 혈소판에서 측정한 스펙트럼은 가우시안 모델을 이용한 커브 피팅으로 노이즈를 제거하고 로컬 최저점에 선형 보간법(linear interpolation)으로 배경 잡음을 제거한다. 전처리 과정을 수행한 스펙트럼에서 분류정확도와 계산복잡도를 개선하기 위해 특징 순위 방법을 이용하여 주요 특징을 선택하였다. 선택된 특징들은 PCA(principal component analysis) 방법으로 변환하여 주성분의 수를 변화시키며 MAP(maximum a posteriori)으로 분류하고 전체 특징을 사용한 경우의 분류 결과와 비교하였다. 실험 결과에서 제안한 방법을 적용한 모든 실험에서 분류 시스템의 계산복잡도를 현저하게 감소시키고 분류정확도는 부분적으로 증가하였다. 특히 파킨슨병과 정상을 분류하는 실험에서 제안한 방법이 전체 특징을 사용한 경우보다 모든 주성분의 수에서 분류정확도가 높았으며 평균 1.7 %의 성능이 향상되었다. 이 결과에서 분류정확도와 계산복잡도의 개선을 고려하면 제안한 방법이 혈소판 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증의 분류 시스템에 효율적으로 사용될 수 있음을 확인하였다.

MIMO-OFDM 시스템에서 에너지 효율성을 위한 기계 학습 기반 적응형 전송 기술 및 Feature Space 연구 (Machine-Learning-Based Link Adaptation for Energy-Efficient MIMO-OFDM Systems)

  • 오명석;김기범;박현철
    • 한국전자파학회논문지
    • /
    • 제27권5호
    • /
    • pp.407-415
    • /
    • 2016
  • 무선 통신의 최근 동향을 살펴보면 에너지 효율적 전송의 중요성이 강조되고 있다. 본 논문은 multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) 무선 시스템에서 에너지 효율성을 최대화하기 위해 기계학습 기술을 사용하는 적응형 전송을 고려한다. MIMO-OFDM 시스템의 채널 상태를 효과적으로 나타내기 위한 two- dimensional capacity(2D-CAP) feature space와 classification 기술을 통해 에너지 효율적인 적응형 전송을 수행하는 machine-learning-based bit and power adaptation(ML-BPA) 알고리즘을 제안한다. 모의 실험 결과를 통해 2D-CAP이 본 논문이 고려하는 무선 채널 상태를 정확하게 나타내며, 이를 통해 적응형 전송의 성능을 향상시킴을 확인하였다. 또한, ordered postprocessing signal-to-noise ratio(ordSNR)를 포함한 다른 feature space들과 직접적인 비교를 통해 2D-CAP이 전송 성능이나 복잡도 측면에서 뚜렷한 이득을 가짐을 확인하였다.

HOG 특징 기반 능동 소나 식별 기법 (Active Sonar Classification Algorithm based on HOG Feature)

  • 신현학;박재현;구본화;서익수;김태환;임준석;고한석;홍우영
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, an effective feature which is capable of classifying targets among the detections obtained from 2D range-bearing maps generated in active sonar environments is proposed. Most conventional approaches for target classification with the 2D maps have considered magnitude of peak and statistical features of the area surrounding the peak. To improve the classification performance, HOG(Histogram of Gradient) feature, which is popular for their robustness in the image textures analysis is applied. In order to classify the target signal, SVM(Support Vector Machine) method with reduced HOG feature by the PCA(Principal Component Analysis) algorithm is incorporated. The various simulations are conducted with the real clutter signal data and the synthesized target signal data. According to the simulated results, the proposed method considering HOG feature is claimed to be effective when classifying the active sonar target compared to the conventional methods.

과도 전류신호를 이용한 냉간 압연기의 판 터짐 검지 시스템 (Strip Rupture Detection System of Cold Rolling Mill using Transient Current Signal)

  • 양승욱;오준석;심민찬;김선진;양보석;이원호
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.40-47
    • /
    • 2010
  • This paper proposes a fault detection system to detect the strip rupture in six-high stand Cold Rolling Mills based on transient current signal of an electrical motor. For this work, signal smoothing technique is used to highlight precise feature between normal and fault condition. Subtracting the smoothed signal from the original signal gives the residuals that contains the information related to the normal or faulty condition. Using residual signal, discrete wavelet transform is performed and acquire the signal presenting fault feature well. Also, feature extraction and classification are executed by using PCA, KPCA and SVM. The actual data is acquired from POSCO for validating the proposed method.

내용기반 오디오 장르 분류를 위한 신호 처리 연구 (A Study on the Signal Processing for Content-Based Audio Genre Classification)

  • 윤원중;이강규;박규식
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.271-278
    • /
    • 2004
  • 본 논문에서는 디지털 신호처리를 이용하여 Classic, Hiphop, Jazz, Rock, Speech 등 5개의 오디오 장르를 자동적으로 분류하는 내용기반 오디오 장르 분류기를 제안하였다. 20초 분량의 질의 오디오로부터 23ms 크기의 Hamming window를 이동시켜 가며 Spectral Centroid, Rolloff, Flux 등 STFT 기반의 특징 계수들과 MFCC, LPC 등의 계수들을 구하여 총 54차에 해당하는 특징 벡터 열을 추출하였으며 분류 알고리즘으로는 k-NN, Gaussian, GMM 분류기를 사용하였다. 최적의 특징 벡터를 선별하는 알고리즘으로 총 54차의 특징벡터 중 가장 성능이 좋은 특징 계수들을 찾아 순차적으로 재배치하는 SFS(Sequential Forward Selection)방법을 사용하였고, 이를 이용하여 최적화 된 10차의 특징 벡터만을 선정해서 오디오 장르 분류에 사용하였다. SFS를 적용한 실험 결과 약 90% 가까운 분류 성공률을 보이고 있어 기존 연구에 비하여 약 10%∼20% 정도의 성능 향상을 꾀 할 수 있었다. 한편 실제 사용자들이 오디오 자동 장르 분류 시스템을 사용할 때 일어날 수 있는 상황을 가정하여 임의 구간에서 질의 데이터를 추출하여 실험을 수행하였으며 실험 결과 오디오 파일의 맨 앞과 맨 뒤 등 worst-case 질의를 제외하고는 약 80%대의 분류 성공률을 얻을 수 있었다.

다중센서 영상 기반의 지상 표적 분류 알고리즘 (Ground Target Classification Algorithm based on Multi-Sensor Images)

  • 이은영;구은혜;이희열;조웅호;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권2호
    • /
    • pp.195-203
    • /
    • 2012
  • 본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.

GPU를 이용한 Gabor Texture 특징점 기반의 금속 패드 변색 분류 알고리즘 (Discolored Metal Pad Image Classification Based on Gabor Texture Features Using GPU)

  • 최학남;박은수;김준철;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.778-785
    • /
    • 2009
  • This paper presents a Gabor texture feature extraction method for classification of discolored Metal pad images using GPU(Graphics Processing Unit). The proposed algorithm extracts the texture information using Gabor filters and constructs a pattern map using the extracted information. Finally, the golden pad images are classified by utilizing the feature vectors which are extracted from the constructed pattern map. In order to evaluate the performance of the Gabor texture feature extraction algorithm based on GPU, a sequential processing and parallel processing using OpenMP in CPU of this algorithm were adopted. Also, the proposed algorithm was implemented by using Global memory and Shared memory in GPU. The experimental results were demonstrated that the method using Shared memory in GPU provides the best performance. For evaluating the effectiveness of extracted Gabor texture features, an experimental validation has been conducted on a database of 20 Metal pad images and the experiment has shown no mis-classification.