• Title/Summary/Keyword: Feature-based Matching

Search Result 539, Processing Time 0.027 seconds

A Subsequence Matching Technique that Supports Time Warping Efficiently (타임 워핑을 지원하는 효율적인 서브시퀀스 매칭 기법)

  • Park, Sang-Hyun;Kim, Sang-Wook;Cho, June-Suh;Lee, Hoen-Gil
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.167-179
    • /
    • 2001
  • This paper discusses an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, we suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multi-dimensional index using a feature vector as indexing attributes. For query precessing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verily the superiority of our method, we perform extensive experiments. The results reseal that our method achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

  • PDF

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images (위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.272-275
    • /
    • 2016
  • This paper presents a method of single image dehazing and surface-based feature detection for remote sensing images. In the conventional dark channel prior (DCP) algorithm, the resulting transmission map invariably includes some block artifacts because of patch-based processing. This also causes image blur. Therefore, a refined transmission map based on a hidden Markov random field and expectation-maximization algorithm can reduce the block artifacts and also increase the image clarity. Also, the proposed algorithm enhances the accuracy of image matching surface-based features in an remote sensing image. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal. Moreover, the proposed algorithm is suitable for the problem of image matching based on feature extraction.

An efficent method of binocular data reconstruction

  • Rao, YunBo;Ding, Xianshu;Fan, Bojiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3721-3737
    • /
    • 2015
  • 3D reconstruction based on binocular data is significant to machine vision. In our method, we propose a new and high efficiency 3D reconstruction approach by using a consumer camera aiming to: 1) address the configuration problem of dual camera in the binocular reconstruction system; 2) address stereo matching can hardly be done well problem in both time computing and precision. The kernel feature is firstly proposed in calibration stage to rectify the epipolar. Then, we segment the objects in the camera into background and foreground, for which system obtains the disparity by different method: local window matching and kernel feature-based matching. Extensive experiments demonstrate our proposed algorithm represents accurate 3D model.

Rectangle Region Based Stereo Matching for Building Reconstruction

  • Wang, Jing;Miyazaki, Toru;Koizumi, Hirokazu;Iwata, Makoto;Chong, Jong-Wha;Yagyu, Hiroyuki;Shimazu, Hideo;Ikenaga, Takeshi;Goto, Satoshi
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.9-17
    • /
    • 2007
  • Feature based stereo matching is an effective way to perform 3D building reconstruction. However, in urban scene, the cluttered background and various building structures may interfere with the performance of building reconstruction. In this paper, we propose a novel method to robustly reconstruct buildings on the basis of rectangle regions. Firstly, we propose a multi-scale linear feature detector to obtain the salient line segments on the object contours. Secondly, candidate rectangle regions are extracted from the salient line segments based on their local information. Thirdly, stereo matching is performed with the list of matching line segments, which are boundary edges of the corresponding rectangles from the left and right image. Experimental results demonstrate that the proposed method can achieve better accuracy on the reconstructed result than pixel-level stereo matching.

  • PDF

Robust Feature Matching Using Haze Removal Based on Transmission Map for Aerial Images (위성 영상에서 전달맵 보정 기반의 안개 제거를 이용한 강인한 특징 정합)

  • Kwon, Oh Seol
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1281-1287
    • /
    • 2016
  • This paper presents a method of single image dehazing and feature matching for aerial remote sensing images. In the case of a aerial image, transferring the information of the original image is difficult as the contrast leans by the haze. This also causes that the image contrast decreases. Therefore, a refined transmission map based on a hidden Markov random field. Moreover, the proposed algorithm enhances the accuracy of image matching surface-based features in an aerial remote sensing image. The performance of the proposed algorithm is confirmed using a variety of aerial images captured by a Worldview-2 satellite.

Probabilistic Estimation of Area- and Feature-based Stereo Matching Results Considering Uncertatinty (불확실성을 고려한 영역과 특징기반 스테레오 정합결과의 확률적 통합)

  • 문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.69-72
    • /
    • 2001
  • This paper proposes a positional estimation method for extracted line features by stereo vision. Based on given reference plane, planar surfaces corresponding the given plane are first extracted. Then, features in the planar surfaces are selected. Using the Extended Kalman Filter the feature positions are estimated by combining area- and feature-based stereo matching results. Experimental results show the proposed method is feasible.

  • PDF

Motion Estimation Using Feature Matching and Strongly Coupled Recurrent Module Fusion (특징정합과 순환적 모듈융합에 의한 움직임 추정)

  • 심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.59-71
    • /
    • 1994
  • This paper proposes a motion estimation method in video sequences based on the feature based matching and anistropic propagation. It measures translation and rotation parameters using a relaxation scheme at feature points and object orinted anistropic propagation in continuous and discontinuous regions. Also an iterative improvement motion extimation based on the strongly coupled module fusion and adaptive smoothing is proposed. Computer simulation results show the effectiveness of the proposed algorithm.

  • PDF

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

A Feature-based Vehicle Tracking System using Trajectory Matching (궤적 정합을 이용한 특징 기반의 차량 추적 시스템)

  • Jeong, Yeong-Gi;Jo, Tae-Hun;Ho, Yo-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.648-656
    • /
    • 2001
  • In this paper, we propose a new feature-based vehicle tracking system using trajectory matching for intelligent traffic surveillance. The proposed system consists of three parts: feature extraction, feature tracking, and feature grouping using trajectory matching. For feature extraction and feature tracking, features of vehicles are selected based on the measure of cornerness and are tracked using linear Kalman filtering. We then group features from the same vehicle in the grouping step. We suggest a new grouping algorithm using the spatial information of features and trajectory matching to solve the over-grouping Problems of the feature-based tracking method. Finally, our proposed tracking system demonstrates good performance for typical traffic scenes with partial occlusion and neighboring conditions.

  • PDF