• Title/Summary/Keyword: Feature weight

Search Result 430, Processing Time 0.028 seconds

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

A New Covert Visual Attention System by Object-based Spatiotemporal Cues and Their Dynamic Fusioned Saliency Map (객체기반의 시공간 단서와 이들의 동적결합 된돌출맵에 의한 상향식 인공시각주의 시스템)

  • Cheoi, Kyungjoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.460-472
    • /
    • 2015
  • Most of previous visual attention system finds attention regions based on saliency map which is combined by multiple extracted features. The differences of these systems are in the methods of feature extraction and combination. This paper presents a new system which has an improvement in feature extraction method of color and motion, and in weight decision method of spatial and temporal features. Our system dynamically extracts one color which has the strongest response among two opponent colors, and detects the moving objects not moving pixels. As a combination method of spatial and temporal feature, the proposed system sets the weight dynamically by each features' relative activities. Comparative results show that our suggested feature extraction and integration method improved the detection rate of attention region.

A Global Path Planning of Mobile Robot Using Modified SOFM (수정된 SOFM을 이용한 이동로봇의 전역 경로계획)

  • Yu Dae-Won;Jeong Se-Mi;Cha Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.473-479
    • /
    • 2006
  • A global path planning algorithm using modified self-organizing feature map(SOFM) which is a method among a number of neural network is presented. The SOFM uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors of the 2-dimensional mesh, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the opposite direction of input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

Image Retrieval using Local Color Histogram and Shape Feature (지역별 색상 분포 히스토그램과 모양 특징을 이용한 영상 검색)

  • 정길선;김성만;이양원
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.50-54
    • /
    • 1999
  • This paper is proposed to image retrieval system using color and shape feature. Color feature used to four maximum value feature among the maximum value extracted from local color distribution histogram. The preprocessing of shape feature consist of edge extraction and weight central point extraction and angular sampling. The sum of distance from weight central point to contour and variation and max/min used to shape feature. The similarity is estimated compare feature of query image with the feature of images in database and the candidate of image is retrieved in order of similarity. We evaluate the effectiveness of shape feature and color feature in experiment used to two hundred of the closed image. The Recall and the Precision is each 0.72 and 0.53 in the result of average experiment. So the proposed method is presented useful method.

  • PDF

Silhouette-based Gait Recognition for Variable Viewpoint (시점 변화에 강인한 실루엣 기반 게이트 인식)

  • 나진영;강성숙;정승도;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1883-1886
    • /
    • 2003
  • Gait is defined as "a manor of walking". It can used as a biometric measure to recognize known persons. Gait is an idiosyncratic feature determined by an individual's weight, stride length, and posture combined with characteristic motion. but its feature extracted from images varies with the viewpoint. In this paper, we propose a gait recognition method using a planer homography, which is robust for viewpoint variation. We represent an individual as key-silhouettes. And we endow key-silhouettes with weight calculated using the characteristic of PCA. Experimental result shows that proposed method is robust for viewpoint variation as images synthesised same viewpoint.

  • PDF

Performance Improvement of Image Retrieval System by Presenting Query based on Human Perception (인간의 인지도에 근거한 질의를 통한 영상 검색의 성능 향상)

  • 유헌우;장동식;오근태
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.158-165
    • /
    • 2003
  • Image similarity is often decided by computing the distance between two feature vectors. Unfortunately, the feature vector cannot always reflect the notion of similarity in human perception. Therefore, most current image retrieval systems use weights measuring the importance of each feature. In this paper new initial weight selection and update rules are proposed for image retrieval purpose. In order to obtain the purpose, database images are first divided into groups based on human perception and, inner and outer query are performed, and, then, optimal feature weights for each database images are computed through searching the group where the result images among retrieved images are belong. Experimental results on 2000 images show the performance of proposed algorithm.

Speech emotion recognition based on genetic algorithm-decision tree fusion of deep and acoustic features

  • Sun, Linhui;Li, Qiu;Fu, Sheng;Li, Pingan
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.462-475
    • /
    • 2022
  • Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Improving the Performance of a Fast Text Classifier with Document-side Feature Selection (문서측 자질선정을 이용한 고속 문서분류기의 성능향상에 관한 연구)

  • Lee, Jae-Yun
    • Journal of Information Management
    • /
    • v.36 no.4
    • /
    • pp.51-69
    • /
    • 2005
  • High-speed classification method becomes an important research issue in text categorization systems. A fast text categorization technique, named feature value voting, is introduced recently on the text categorization problems. But the classification accuracy of this technique is not good as its classification speed. We present a novel approach for feature selection, named document-side feature selection, and apply it to feature value voting method. In this approach, there is no feature selection process in learning phase; but realtime feature selection is executed in classification phase. Our results show that feature value voting with document-side feature selection can allow fast and accurate text classification system, which seems to be competitive in classification performance with Support Vector Machines, the state-of-the-art text categorization algorithms.

Robust Watermarking Scheme Based on Radius Weight Mean and Feature-Embedding Technique

  • Yang, Ching-Yu
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.512-522
    • /
    • 2013
  • In this paper, the radius weight mean (RWM) and the feature-embedding technique are used to present a novel watermarking scheme for color images. Simulations validate that the stego-images generated by the proposed scheme are robust against most common image-processing operations, such as compression, color quantization, bit truncation, noise addition, cropping, blurring, mosaicking, zigzagging, inversion, (edge) sharpening, and so on. The proposed method possesses outstanding performance in resisting high compression ratio attacks: JPEG2000 and JPEG. Further, to provide extra hiding storage, a steganographic method using the RWM with the least significant bit substitution technique is suggested. Experiment results indicate that the resulting perceived quality is desirable, whereas the peak signal-to-noise ratio is high. The payload generated using the proposed method is also superior to that generated by existing approaches.