• Title/Summary/Keyword: Feature weight

Search Result 430, Processing Time 0.023 seconds

그래픽 하드웨어 가속을 이용한 실시간 색상 인식 (Real-time Color Recognition Based on Graphic Hardware Acceleration)

  • 김구진;윤지영;최유주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권1호
    • /
    • pp.1-12
    • /
    • 2008
  • 본 논문에서는 야외 및 실내에서 촬영된 차량 영상에 대해 실시간으로 차량 색상을 인식할 수 있는 GPU(Graphics Processing Unit) 기반의 알고리즘을 제시한다. 전처리 과정에서는 차량 색상의 표본 영상들로부터 특징벡터를 계산한 뒤, 이들을 색상 별로 조합하여 GPU에서 사용할 참조 텍스쳐(Reference texture)로 저장한다. 차량 영상이 입력되면, 특징벡터를 계산한 뒤 GPU로 전송하고, GPU에서는 참조 텍스쳐 내의 표본 특징리터들과 비교하여 색상 별 유사도를 측정한 뒤 CPU로 전송하여 해당 색상명을 인식한다. 분류의 대상이 되는 색상은 가장 흔히 발견되는 차량 색상들 중에서 선택한 7가지 색상이며, 검정색, 은색, 흰색과 같은 3가지의 무채색과 빨강색, 노랑색, 파랑색, 녹색과 같은 4가지의 유채색으로 구성된다. 차량 영상에 대한 특징벡터는 차량 영상에 대해 HSI(Hue-Saturation-Intensity) 색상모델을 적용하여 색조-채도 조합과 색조-명도 조합으로 색상 히스토램을 구성하고, 이 중의 채도 값에 가중치를 부여함으로써 구성한다. 본 논문에서 제시하는 알고리즘은 다양한 환경에서 촬영된 많은 수의 표본 특징벡터를 사용하고, 색상 별 특성을 뚜렷이 반영하는 특징벡터를 구성하였으며, 적합한 유사도 측정함수(likelihood function)를 적용함으로써, 94.67%에 이르는 색상 인식 성공률을 보였다. 또한, GPU를 이용함으로써 대량의 표본 특징벡터의 집합과 입력 영상에 대한 특징벡터 간의 유사도 측정 및 색상 인식과정을 병렬로 처리하였다. 실험에서는, 색상 별로 1,024장씩, 총 7,168장의 차량 표본 영상을 이용하여 GPU에서 사용하는 참조 텍스쳐를 구성하였다. 특징벡터의 구성에 소요되는 시간은 입력 영상의 크기에 따라 다르지만, 해상도 $150{\times}113$의 입력 영상에 대해 측정한 결과 평균 0.509ms가 소요된다. 계산된 특징벡터를 이용하여 색상 인식의 수행시간을 계산한 결과 평균 2.316ms의 시간이 소요되었고, 이는 같은 알고리즘을 CPU 상에서 수행한 결과에 비해 5.47배 빠른 속도이다. 본 연구에서는 차량만을 대상으로 하여 색상 인식을 실험하였으나, 일반적인 피사체의 색상 인식에 대해서도 제시된 알고리즘을 확장하여 적용할 수 있다.

AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발 (AdaBoost-based Real-Time Face Detection & Tracking System)

  • 김정현;김진영;홍영진;권장우;강동중;노태정
    • 제어로봇시스템학회논문지
    • /
    • 제13권11호
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

A novel classification approach based on Naïve Bayes for Twitter sentiment analysis

  • Song, Junseok;Kim, Kyung Tae;Lee, Byungjun;Kim, Sangyoung;Youn, Hee Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.2996-3011
    • /
    • 2017
  • With rapid growth of web technology and dissemination of smart devices, social networking service(SNS) is widely used. As a result, huge amount of data are generated from SNS such as Twitter, and sentiment analysis of SNS data is very important for various applications and services. In the existing sentiment analysis based on the $Na{\ddot{i}}ve$ Bayes algorithm, a same number of attributes is usually employed to estimate the weight of each class. Moreover, uncountable and meaningless attributes are included. This results in decreased accuracy of sentiment analysis. In this paper two methods are proposed to resolve these issues, which reflect the difference of the number of positive words and negative words in calculating the weights, and eliminate insignificant words in the feature selection step using Multinomial $Na{\ddot{i}}ve$ Bayes(MNB) algorithm. Performance comparison demonstrates that the proposed scheme significantly increases the accuracy compared to the existing Multivariate Bernoulli $Na{\ddot{i}}ve$ Bayes(BNB) algorithm and MNB scheme.

A Novel Multi-view Face Detection Method Based on Improved Real Adaboost Algorithm

  • Xu, Wenkai;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2720-2736
    • /
    • 2013
  • Multi-view face detection has become an active area for research in the last few years. In this paper, a novel multi-view human face detection algorithm based on improved real Adaboost is presented. Real Adaboost algorithm is improved by weighted combination of weak classifiers and the approximately best combination coefficients are obtained. After that, we proved that the function of sample weight adjusting method and weak classifier training method is to guarantee the independence of weak classifiers. A coarse-to-fine hierarchical face detector combining the high efficiency of Haar feature with pose estimation phase based on our real Adaboost algorithm is proposed. This algorithm reduces training time cost greatly compared with classical real Adaboost algorithm. In addition, it speeds up strong classifier converging and reduces the number of weak classifiers. For frontal face detection, the experiments on MIT+CMU frontal face test set result a 96.4% correct rate with 528 false alarms; for multi-view face in real time test set result a 94.7 % correct rate. The experimental results verified the effectiveness of the proposed approach.

개선된 데이터마이닝을 위한 혼합 학습구조의 제시 (Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management)

  • Kim, Steven H.;Shin, Sung-Woo
    • 정보기술응용연구
    • /
    • 제1권
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

Size Function에 기반한 개선된 모양 표기자 구현 (Implementation of Improved Shape Descriptor based on Size Function)

  • 임헌선;안광일;안재형
    • 한국멀티미디어학회논문지
    • /
    • 제4권3호
    • /
    • pp.215-221
    • /
    • 2001
  • 본 논문에서는 사이즈 펑션을 이용하여 윤곽선으로 표현된 물체의 특징을 추출할 때 발생하는 에러를 줄이기 위해 방향에 따라 가중값을 달리하는 새로운 표본화 알고리즘을 제안했다. 특히 회전, 이동, 크기 변환과 같은 변환에 대해서 불변성을 갖도록 설계했다. 특징값은 물체의 윤곽선을 사이즈 펑션 처리를 통해서 만들어진 행렬이고 이들간의 거리를 측정 비교함으로써 본 논문에서 제안한 방법이 효과적임을 보였다. 실험 결과 기존의 표본화 방법보다 제안한 표본화 방법을 사용했을 때 원본과 변형된 이미지 사이의 유클리디언 거리가 회전에 대해서 약 57% 크기변형에 대해서는 약 91% 개선되었다.

  • PDF

SIFT를 이용한 위성사진의 정합기법 (A Scheme for Matching Satellite Images Using SIFT)

  • 강석천;황인택;최광남
    • 인터넷정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-23
    • /
    • 2009
  • 본 논문에서 우리는 위성 영상에 대하여 객체를 지역화한 접근을 제안한다. 우리의 방법은 서술 벡터에 기반한 특징 정합 방법이다. 객체를 지역화하는 방법은 SIFT(Scale Invariant Feature Transform)를 적용시킨다. 먼저, 위성영상의 키포인트를 찾고, 키포인트의 서술 벡터를 일반화한다. 그리고 서술 벡터간에 유사성을 측정하여 키포인트를 매칭시킨다. 마지막으로, 키포인트의 인접 픽셀값에 가중치를 주어 객체에서 위치를 결정한다. SIFT를 이용한 이 실험은 다양한 스케일과 어파인 변환에 대해 좋은 결과를 산출하였다. 본 논문에서 제안된 방법은 구글 어스의 위성영상을 사용하였다.

  • PDF

λ-퍼지척도를 이용한 얼굴특징의 윤곽선 검출 (An Edge Detection for Face Feature Extraction using λ-Fuzzy Measure)

  • 박인규;안보혁;최규석
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.75-79
    • /
    • 2009
  • 얼굴특징의 윤곽선 검출을 위하여 ${\lambda}$-퍼지척도를 이용하는 방법을 제안하였다. 기존의 방법에는 계곡, 명도, 경계선과 같은 특징점를 이용하여 얼굴 특징점을 찾는다. 이 방법에는 여러가지 특정점을 이용하기 때문에 주변잡음과 기타환경에 민감하다는 단점을 가지고 있다. 본 논문에서는 ${\lambda}$-퍼지척도를 이용하여 이러한 단점을 해결하였다. 해당 화소에 대하여 각각의 가중치를 구성함으로서 이들에 대한 평가를 무게중심을 적용하여 종합적으로 평가 하였다. 따라서 인접정보를 유지하여 경계선의 연속성을 확보할 수 있었다. 실험을 통하여 기존의 방법에 비하여 알고리즘의 단순화로 인한 계산량의 감소를 보였으며, 항목간의 중요도에 대한 무게 중심을 검출하여 각도변화와 조명에 보다 강인한 경계선을 추출 할 수 있었다.

  • PDF

Finger Vein Recognition Based on Multi-Orientation Weighted Symmetric Local Graph Structure

  • Dong, Song;Yang, Jucheng;Chen, Yarui;Wang, Chao;Zhang, Xiaoyuan;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4126-4142
    • /
    • 2015
  • Finger vein recognition is a biometric technology using finger veins to authenticate a person, and due to its high degree of uniqueness, liveness, and safety, it is widely used. The traditional Symmetric Local Graph Structure (SLGS) method only considers the relationship between the image pixels as a dominating set, and uses the relevant theories to tap image features. In order to better extract finger vein features, taking into account location information and direction information between the pixels of the image, this paper presents a novel finger vein feature extraction method, Multi-Orientation Weighted Symmetric Local Graph Structure (MOW-SLGS), which assigns weight to each edge according to the positional relationship between the edge and the target pixel. In addition, we use the Extreme Learning Machine (ELM) classifier to train and classify the vein feature extracted by the MOW-SLGS method. Experiments show that the proposed method has better performance than traditional methods.

카이제곱 통계량과 지지벡터기계를 이용한 스팸메일 필터 (Spam Filter by Using X2 Statistics and Support Vector Machines)

  • 이성욱
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.249-254
    • /
    • 2010
  • 본 논문은 지지벡터기계를 이용하여 스팸메일을 자동으로 분류하는 시스템을 제안한다. 이메일에 포함된 단어의 어휘 정보와 품사 태그 정보를 지지벡터기계의 자질로 사용한다. 우리는 카이제곱 통계량을 이용하여 자질을 선택한 후 각각의 자질을 TF, TF-IDF, 이진 가중치 등으로 표현하여 실험하였다. 카이제곱 통계량을 이용하여 선택된 자질들을 이용하여 SVM을 학습한 후, SVM분류기는 각각의 이메일의 스팸 여부를 결정한다. 실험 결과, 선택되어진 자질들이 성능향상을 가져왔으며, TREC05-p1 스팸 말뭉치에 대해 약 98.9%의 정확도를 얻었다.