• Title/Summary/Keyword: Feature selection algorithm

Search Result 342, Processing Time 0.021 seconds

Improved Feature Selection Techniques for Image Retrieval based on Metaheuristic Optimization

  • Johari, Punit Kumar;Gupta, Rajendra Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Content-Based Image Retrieval (CBIR) system plays a vital role to retrieve the relevant images as per the user perception from the huge database is a challenging task. Images are represented is to employ a combination of low-level features as per their visual content to form a feature vector. To reduce the search time of a large database while retrieving images, a novel image retrieval technique based on feature dimensionality reduction is being proposed with the exploit of metaheuristic optimization techniques based on Genetic Algorithm (GA), Extended Binary Cuckoo Search (EBCS) and Whale Optimization Algorithm (WOA). Each image in the database is indexed using a feature vector comprising of fuzzified based color histogram descriptor for color and Median binary pattern were derived in the color space from HSI for texture feature variants respectively. Finally, results are being compared in terms of Precision, Recall, F-measure, Accuracy, and error rate with benchmark classification algorithms (Linear discriminant analysis, CatBoost, Extra Trees, Random Forest, Naive Bayes, light gradient boosting, Extreme gradient boosting, k-NN, and Ridge) to validate the efficiency of the proposed approach. Finally, a ranking of the techniques using TOPSIS has been considered choosing the best feature selection technique based on different model parameters.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

Feature selection-based Risk Prediction for Hypertension in Korean men (한국 남성의 고혈압에 대한 특징 선택 기반 위험 예측)

  • Dashdondov, Khongorzul;Kim, Mi-Hye
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.323-325
    • /
    • 2021
  • In this article, we have improved the prediction of hypertension detection using the feature selection method for the Korean national health data named by the KNHANES database. The study identified a variety of risk factors associated with chronic hypertension. The paper is divided into two modules. The first of these is a data pre-processing step that uses a factor analysis (FA) based feature selection method from the dataset. The next module applies a predictive analysis step to detect and predict hypertension risk prediction. In this study, we compare the mean standard error (MSE), F1-score, and area under the ROC curve (AUC) for each classification model. The test results show that the proposed FIFA-OE-NB algorithm has an MSE, F1-score, and AUC outcomes 0.259, 0.460, and 64.70%, respectively. These results demonstrate that the proposed FIFA-OE method outperforms other models for hypertension risk predictions.

Computer Aided Diagnosis System based on Performance Evaluation Agent Model

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • In this paper, we present a performance evaluation agent based on fuzzy cluster analysis and validity measures. The proposed agent is consists of three modules, fuzzy cluster analyzer, performance evaluation measures, and feature ranking algorithm for feature selection step in CAD system. Feature selection is an important step commonly used to create more accurate system to help human experts. Through this agent, we get the feature ranking on the dataset of mass and calcification lesions extracted from the public real world mammogram database DDSM. Also we design a CAD system incorporating the agent and apply five different feature combinations to the system. Experimental results proposed approach has higher classification accuracy and shows the feasibility as a diagnosis supporting tool.

A Clustering Approach for Feature Selection in Microarray Data Classification Using Random Forest

  • Aydadenta, Husna;Adiwijaya, Adiwijaya
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 2018
  • Microarray data plays an essential role in diagnosing and detecting cancer. Microarray analysis allows the examination of levels of gene expression in specific cell samples, where thousands of genes can be analyzed simultaneously. However, microarray data have very little sample data and high data dimensionality. Therefore, to classify microarray data, a dimensional reduction process is required. Dimensional reduction can eliminate redundancy of data; thus, features used in classification are features that only have a high correlation with their class. There are two types of dimensional reduction, namely feature selection and feature extraction. In this paper, we used k-means algorithm as the clustering approach for feature selection. The proposed approach can be used to categorize features that have the same characteristics in one cluster, so that redundancy in microarray data is removed. The result of clustering is ranked using the Relief algorithm such that the best scoring element for each cluster is obtained. All best elements of each cluster are selected and used as features in the classification process. Next, the Random Forest algorithm is used. Based on the simulation, the accuracy of the proposed approach for each dataset, namely Colon, Lung Cancer, and Prostate Tumor, achieved 85.87%, 98.9%, and 89% accuracy, respectively. The accuracy of the proposed approach is therefore higher than the approach using Random Forest without clustering.

Rough Entropy-based Knowledge Reduction using Rough Set Theory (러프집합 이론을 이용한 러프 엔트로피 기반 지식감축)

  • Park, In-Kyoo
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.223-229
    • /
    • 2014
  • In an attempt to retrieve useful information for an efficient decision in the large knowledge system, it is generally necessary and important for a refined feature selection. Rough set has difficulty in generating optimal reducts and classifying boundary objects. In this paper, we propose quick reduction algorithm generating optimal features by rough entropy analysis for condition and decision attributes to improve these restrictions. We define a new conditional information entropy for efficient feature extraction and describe procedure of feature selection to classify the significance of features. Through the simulation of 5 datasets from UCI storage, we compare our feature selection approach based on rough set theory with the other selection theories. As the result, our modeling method is more efficient than the previous theories in classification accuracy for feature selection.

Removing Non-informative Features by Robust Feature Wrapping Method for Microarray Gene Expression Data (유전자 알고리즘과 Feature Wrapping을 통한 마이크로어레이 데이타 중복 특징 소거법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.463-478
    • /
    • 2008
  • Due to the high dimensional problem, typically machine learning algorithms have relied on feature selection techniques in order to perform effective classification in microarray gene expression datasets. However, the large number of features compared to the number of samples makes the task of feature selection computationally inprohibitive and prone to errors. One of traditional feature selection approach was feature filtering; measuring one gene per one step. Then feature filtering was an univariate approach that cannot validate multivariate correlations. In this paper, we proposed a function for measuring both class separability and correlations. With this approach, we solved the problem related to feature filtering approach.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

Analysis of Problem Spaces and Algorithm Behaviors for Feature Selection (특징 선택을 위한 문제 공간과 알고리즘 동작 분석)

  • Lee Jin-Seon;Oh Il-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.6
    • /
    • pp.574-579
    • /
    • 2006
  • The feature selection algorithms should broadly and efficiently explore the huge problem spaces to find a good solution. This paper attempts to gain insights on the fitness landscape of the spaces and to improve search capability of the algorithms. We investigate the solution spaces in terms of statistics on local maxima and minima. We also analyze behaviors of the existing algorithms and improve their solutions.

Finding Biomarker Genes for Type 2 Diabetes Mellitus using Chi-2 Feature Selection Method and Logistic Regression Supervised Learning Algorithm

  • Alshamlan, Hala M
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.9-13
    • /
    • 2021
  • Type 2 diabetes mellitus (T2D) is a complex diabetes disease that is caused by high blood sugar, insulin resistance, and a relative lack of insulin. Many studies are trying to predict variant genes that causes this disease by using a sample disease model. In this paper we predict diabetic and normal persons by using fisher score feature selection, chi-2 feature selection and Logistic Regression supervised learning algorithm with best accuracy of 90.23%.