• 제목/요약/키워드: Feature normalization

검색결과 156건 처리시간 0.022초

정규화와 엔트로피의 최소화에 의한 영상 경계의 애매성 제거 및 영상 구조 파악에 의한 경계선 추출 (Removal of the Ambiguity of Images by Normalization and Entropy Minimization and Edge Detection by Understanding of Image Structures)

  • 조동욱;백승재
    • 한국정보처리학회논문지
    • /
    • 제6권9호
    • /
    • pp.2558-2562
    • /
    • 1999
  • 본 논문에서는 정규화 및 엔트로피의 최소화에 의해 영상의 애매성을 제거한 후, 톨이론을 적용하여 영상구조의 파악을 통하여 잡음 제거 및 경계선을 추출하는 방법에 대해 제안하고자 한다. 기존의 방법은 두 개의 영역이 유사한 명암도 분포값을 가지면서 접촉되어 있거나 명암도 값의 분포가 완만한 경우 경계선을 추출하지 못하는 문제가 존재하였다. 이는 후의 특징 추출 등과 같은 처리 과정에 영향을 미쳐 오인식과 직결되는 문제점을 야기한다. 본 논문에서는 이 같은 문제점을 해결하기 위한 방법론을 제안하고자 하며, 실험에 의해 본 논문의 유용성을 입증하고자 한다.

  • PDF

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.

한국 신문의 영어 번역에 나타난 번역 보편소의 코퍼스 기반 분석 (A Corpus-based Study of Translation Universals in English Translations of Korean Newspaper Texts)

  • 고광윤;이영희
    • 비교문화연구
    • /
    • 제45권
    • /
    • pp.109-143
    • /
    • 2016
  • 본 연구는 번역된 텍스트들에 전형적으로 나타나는 언어적 특성들인 번역 보편소(translation universals)에 관한 코퍼스 기반 연구이다. 지금까지의 번역 보편소 연구는 언어계통상 서로 밀접한 관련이 있는 영어와 다른 유럽어 사이의 번역에 집중되어 왔으며, 다른 한편으로 주로 문학 장르의 분석에 치중되어 있다는 아쉬움을 지닌다. 본 연구에서는 관련 연구가 지닌 이러한 두 가지 주요 문제점을 보완하고자 하는 노력의 일환으로 한국어를 원문으로 하는 영어 번역 가운데 비문학 장르인 신문언어 텍스트를 분석대상으로 선택하였다. 먼저, 번역된 신문영어 텍스트와 비번역 신문영어 텍스트를 정해진 기준에 따라 수집하여 번역과 비번역 영어(translated and non-translated English)로 구성된 대응코퍼스(comparable corpora)를 구축하였다. 이렇게 구축된 대응 코퍼스를 바탕으로 기존 문헌에서 논의된 번역 보편소 가설 가운데 가장 대표적인 단순화(simplification), 명시화(explicitation), 규범화(normalization), 평준화(leveling-out) 현상이 한국어 신문의 영어 번역 텍스트에서 어떠한 양상을 보이는지 살펴봄으로써 각 가설들이 지니는 타당성을 검증해보고자 하였다. 본 연구의 분석결과를 종합해보면, 단순화와 규범화를 제외한 나머지 하위가설의 언어적 특성들은 모든 언어쌍과 모든 텍스트 장르에 걸쳐 일반화하기에 다소 한계가 있는 것으로 나타났다. 또한, 번역 보편소의 개념 규정이나 분석지표의 정교화, 그리고 결과의 일반화에는 신중한 접근이 필요할 것으로 보인다.

가치분석을 통한 휘처 기반의 요구사항 변경 관리 (Feature-Oriented Requirements Change Management with Value Analysis)

  • 안상임;정기원
    • 한국전자거래학회지
    • /
    • 제12권3호
    • /
    • pp.33-47
    • /
    • 2007
  • 소프트웨어 개발 초기에 모든 요구사항을 정의하는 것은 불가능하기 때문에 요구사항은 소프트웨어 개발이 진행되는 동안에 지속적으로 변경된다. 이러한 요구사항 변경은 개발자가 소프트웨어 구조나 행위를 완벽하게 이해하지 못하거나 변경에 따라 영향을 받는 모든 부분을 식별할 수 없을 경우 많은 오류를 야기 시킨다. 그러므로, 조직의 비즈니스에 공헌하면서 비용 효과적으로 적절히 처리되기 위하여 요구사항은 관리되고 평가되어야한다. 본 논문은 가치분석을 통하여 생성된 휘처 기반의 요구사항추적 링크를 근간으로 하는 요구사항변경 관리 기법을 제안한다. 이는 사용자 요구사항과 산출물간의 연결을 분석하기 위하여 휘처를 중간 매개체로 활용한 추적 링크를 이용한다. 그리고, 요구사항 변경 요청을 휘처 단위로 상세화하기 위한 변경 트리 모델을 정의하고 변경 관리가 수행되는 전체적인 프로세스를 제시한다. 또한, 요구사항 변경 관리 기법을 자산관리포탈시스템에 적용한 사례의 결과를 기술한다.

  • PDF

조명 환경에 강인한 얼굴인식 성능향상을 위한 Bilateral 필터 기반 조명 정규화 방법에 관한 연구 (A Study on Illumination Normalization Method based on Bilateral Filter for Illumination Invariant Face Recognition)

  • 이상섭;이수영;김중규
    • 대한전자공학회논문지SP
    • /
    • 제47권4호
    • /
    • pp.49-55
    • /
    • 2010
  • 조명 환경에 의해 발생하는 강한 그림자 영역은 반사 영상을 이용하는 얼굴인식시스템의 성능을 저하시키는 주요인으로써, 인식률을 향상시키기 위해서는 강한 그림자 영역과 얼굴의 특징 영역을 구분해 낼 필요가 있다. 한편 Bilateral 필터는 영상 화소 값의 비선형적인 조합을 사용하여 경계영역을 보존하면서도, 전체 영상을 평활화할 수 있는 특성을 갖는다. 따라서 Bilateral 필터의 특성은 레티넥스 기반 조명 정규화 방법에서의 조명을 추정하는 과정에 사용되는 평활화 필터에 적합하다. 이에 본 논문에서는 강한 그림자 영역을 효과적으로 제거하기 위한 Bilateral 필터 기반의 새로운 조명 정규화 방법을 제안한다. Bilateral 필터의 계수는 화소 간 근접성(proximity)과 불연속성(discontinuity)의 곱으로 설계하여, 추정된 조명 영상에서 강한 그림자 영역이 비교적 정확하게 보존되도록 한다. 제안된 방법의 성능은 PCA(Principle Component Analysis)를 이용하여 인식률을 측정하고, 두 가지 데이터베이스에 대해 기존의 조명 정규화 방법들과 비교하여 평가하였다.

베이지안 기법을 적용한 마이크로어레이 데이터 분류 알고리즘 설계와 구현 (The Algorithm Design and Implement of Microarray Data Classification using the Byesian Method)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제10권12호
    • /
    • pp.2283-2288
    • /
    • 2006
  • 최근 생명 정보학 기술의 발달로 마이크로 단위의 실험조작이 가능해짐에 따라 하나의 chip상에서 전체 genome의 expression pattern을 관찰할 수 있게 되었고, 동시에 수 만개의 유전자들 간의 상호작용도 연구 가능하게 되었다. 이처럼 DNA 마이크로어레이 기술은 복잡한 생물체를 이해하는 새로운 방향을 제시해주게 되었다. 따라서 이러한 기술을 통해 얻어진 대량의 유전자 정보들을 효과적으로 분석하는 방법이 시급하다. 본 논문에서는 실험용 데이터로 하버드대학교의 바이오인포메틱스 코어 그룹의 샘플데이터 이용하여 마이크로어레이 실험에서 다양한 원인에 의해 발생하는 잡음(noise)을 줄이거나 제거하는 과정인 표준화 과정을 거쳐 특징 추출방법인 베이지안 알고리즘 ASA(Adaptive Simulated Annealing) 방법을 이용하여 데이터를 2개의 클래스로 나누고, 정확도를 평가하는 시스템을 설계하고 구현하였다. Lowess 표준화 후 98.23%의 정확도를 보였다.

회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교 (Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed)

  • 문기영;김형진;황세윤;이장현
    • 한국항해항만학회지
    • /
    • 제46권3호
    • /
    • pp.280-288
    • /
    • 2022
  • 본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.

Facial Shape Recognition Using Self Organized Feature Map(SOFM)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • International journal of advanced smart convergence
    • /
    • 제8권4호
    • /
    • pp.104-112
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation forthe identification of a face shape. The proposed algorithm uses face shape asinput information in a single camera environment and divides only face area through preprocessing process. However, it is not easy to accurately recognize the face area that is sensitive to lighting changes and has a large degree of freedom, and the error range is large. In this paper, we separated the background and face area using the brightness difference of the two images to increase the recognition rate. The brightness difference between the two images means the difference between the images taken under the bright light and the images taken under the dark light. After separating only the face region, the face shape is recognized by using the self-organization feature map (SOFM) algorithm. SOFM first selects the first top neuron through the learning process. Second, the highest neuron is renewed by competing again between the highest neuron and neighboring neurons through the competition process. Third, the final top neuron is selected by repeating the learning process and the competition process. In addition, the competition will go through a three-step learning process to ensure that the top neurons are updated well among neurons. By using these SOFM neural network algorithms, we intend to implement a stable and robust real-time face shape recognition system in face shape recognition.

Three-Dimensional Shape Recognition and Classification Using Local Features of Model Views and Sparse Representation of Shape Descriptors

  • Kanaan, Hussein;Behrad, Alireza
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.343-359
    • /
    • 2020
  • In this paper, a new algorithm is proposed for three-dimensional (3D) shape recognition using local features of model views and its sparse representation. The algorithm starts with the normalization of 3D models and the extraction of 2D views from uniformly distributed viewpoints. Consequently, the 2D views are stacked over each other to from view cubes. The algorithm employs the descriptors of 3D local features in the view cubes after applying Gabor filters in various directions as the initial features for 3D shape recognition. In the training stage, we store some 3D local features to build the prototype dictionary of local features. To extract an intermediate feature vector, we measure the similarity between the local descriptors of a shape model and the local features of the prototype dictionary. We represent the intermediate feature vectors of 3D models in the sparse domain to obtain the final descriptors of the models. Finally, support vector machine classifiers are used to recognize the 3D models. Experimental results using the Princeton Shape Benchmark database showed the average recognition rate of 89.7% using 20 views. We compared the proposed approach with state-of-the-art approaches and the results showed the effectiveness of the proposed algorithm.

미확인 작품 식별을 위한 Feature 선정 및 유사도 비교 시스템 구축 (Feature selection and similarity comparison system for identification of unknown paintings)

  • 박경엽;김주성;김현수;신동명
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.17-24
    • /
    • 2021
  • 최근 블록체인을 기반으로 하는 미술품 NFT(Non Fungible Token) 시장은 기존 그림 작품 뿐만 아니라 작품을 홀로그램화 하여 거래될 정도로 활성화 되고 있다. 하지만 이렇게 방대한 미술품 시장에서 미확인 작품은 위조 수준이 정교하여서 전문가조차 진품인지 위작인지 판별하기 어렵다는 문제점이 존재한다. 이러한 문제점은 진품이 출품될 시에도 위작으로 의심받을 수 있어 작품 및 작가의 가치하락까지 이어질 수 있다. 이러한 문제를 해결하기 위하여 본 논문에서는 객관적인 분석을 통하여 추출된 데이터 중 색도 Chromaticity 데이터를 4사분면으로 분류하여 비교군과 교점을 추출하고 교점에 해당하는 포인트의 XRF와 초분광 스펙트럼 데이터를 이용하여 미확인 작품의 작가를 추정하는 시스템을 제안한다.