• Title/Summary/Keyword: Feature mapping

Search Result 334, Processing Time 0.163 seconds

Line-Based SLAM Using Vanishing Point Measurements Loss Function (소실점 정보의 Loss 함수를 이용한 특징선 기반 SLAM)

  • Hyunjun Lim;Hyun Myung
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.330-336
    • /
    • 2023
  • In this paper, a novel line-based simultaneous localization and mapping (SLAM) using a loss function of vanishing point measurements is proposed. In general, the Huber norm is used as a loss function for point and line features in feature-based SLAM. The proposed loss function of vanishing point measurements is based on the unit sphere model. Because the point and line feature measurements define the reprojection error in the image plane as a residual, linear loss functions such as the Huber norm is used. However, the typical loss functions are not suitable for vanishing point measurements with unbounded problems. To tackle this problem, we propose a loss function for vanishing point measurements. The proposed loss function is based on unit sphere model. Finally, we prove the validity of the loss function for vanishing point through experiments on a public dataset.

Visual-Attention Using Corner Feature Based SLAM in Indoor Environment (실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM)

  • Shin, Yong-Min;Yi, Chu-Ho;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.90-101
    • /
    • 2012
  • The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.

Realistic 3D Scene Reconstruction from an Image Sequence (연속적인 이미지를 이용한 3차원 장면의 사실적인 복원)

  • Jun, Hee-Sung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.183-188
    • /
    • 2010
  • A factorization-based 3D reconstruction system is realized to recover 3D scene from an image sequence. The image sequence is captured from uncalibrated perspective camera from several views. Many matched feature points over all images are obtained by feature tracking method. Then, these data are supplied to the 3D reconstruction module to obtain the projective reconstruction. Projective reconstruction is converted to Euclidean reconstruction by enforcing several metric constraints. After many triangular meshes are obtained, realistic reconstruction of 3D models are finished by texture mapping. The developed system is implemented in C++, and Qt library is used to implement the system user interface. OpenGL graphics library is used to realize the texture mapping routine and the model visualization program. Experimental results using synthetic and real image data are included to demonstrate the effectiveness of the developed system.

Feature-Based Non-manifold Geometric Modeling System to Provide Integrated Environment for Design and Analysis of Injection Molding Products (사출 성형 제품의 설계 및 해석의 통합 환경을 제공하기 위한 특징 형상 기반 비다양체 모델링 시스템의 개발)

  • 이상헌;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.133-149
    • /
    • 1996
  • In order to reduce the trial-and-errors in design and production of injection molded plastic parts, there has been much research effort not only on CAE systems which simulate the injection molding process, but also on CAD systems which support initial design and re-design of plastic parts and their molds. The CAD systems and CAE systems have been developed independently with being built on different basis. That is, CAD systems manipulate the part shapes and the design features in a complete solid model, while CAE systems work on shell meshes generated on the abstract sheet model or medial surface of the part. Therefore, it is required to support the two types of geometric models and feature information in one environment to integrate CAD and CAE systems for accelerating the design speed. A feature-based non-manifold geometric modeling system has been developed to provide an integrated environment for design and analysis of injection molding products. In this system, the geometric models for CAD and CAE systems are represented by a non-manifold boundary representation and they are merged into a single geometric model. The suitable form of geometric model for any application can be extracted from this model. In addition, the feature deletion and interaction problem of the feature-based design system has been solved clearly by introducing the non-manifold Boolean operation based on 'merge and selection' algorithm. The sheet modeling capabilities were also developed for easy modeling of thin plastic parts.

  • PDF

Performance Simulation of Various Feature-Initialization Algorithms for Forward-Viewing Mono-Camera-Based SLAM (전방 모노카메라 기반 SLAM 을 위한 다양한 특징점 초기화 알고리즘의 성능 시뮬레이션)

  • Lee, Hun;Kim, Chul Hong;Lee, Tae-Jae;Cho, Dong-Il Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.833-838
    • /
    • 2016
  • This paper presents a performance evaluation of various feature-initialization algorithms for forward-viewing mono-camera based simultaneous localization and mapping (SLAM), specifically in indoor environments. For mono-camera based SLAM, the position of feature points cannot be known from a single view; therefore, it should be estimated from a feature initialization method using multiple viewpoint measurements. The accuracy of the feature initialization method directly affects the accuracy of the SLAM system. In this study, four different feature initialization algorithms are evaluated in simulations, including linear triangulation; depth parameterized, linear triangulation; weighted nearest point triangulation; and particle filter based depth estimation algorithms. In the simulation, the virtual feature positions are estimated when the virtual robot, containing a virtual forward-viewing mono-camera, moves forward. The results show that the linear triangulation method provides the best results in terms of feature-position estimation accuracy and computational speed.

SOMk-NN Search Algorithm for Content-Based Retrieval (내용기반 검색을 위한 SOMk-NN탐색 알고리즘)

  • O, Gun-Seok;Kim, Pan-Gu
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.358-366
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the high speed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps(SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space and generates a topological feature map. A topological feature map preserves the mutual relations (similarities) in feature spaces of input data, and clusters mutually similar feature vectors in a neighboring nodes. Therefore each node of the topological feature map holds a node vector and similar images that is closest to each node vector. We implemented a k-NN search for similar image classification as to (1) access to topological feature map, and (2) apply to pruning strategy of high speed search. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;이규봉;이유홍;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.165-170
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

  • PDF

An Integrated Face Detection and Recognition System (통합된 시스템에서의 얼굴검출과 인식기법)

  • 박동희;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1312-1317
    • /
    • 2003
  • This paper presents an integrated approach to unconstrained face recognition in arbitrary scenes. The front end of the system comprises of a scale and pose tolerant face detector. Scale normalization is achieved through novel combination of a skin color segmentation and log-polar mapping procedure. Principal component analysis is used with the multi-view approach proposed in[10] to handle the pose variations. For a given color input image, the detector encloses a face in a complex scene within a circular boundary and indicates the position of the nose. Next, for recognition, a radial grid mapping centered on the nose yields a feature vector within the circular boundary. As the width of the color segmented region provides an estimated size for the face, the extracted feature vector is scale normalized by the estimated size. The feature vector is input to a trained neural network classifier for face identification. The system was evaluated using a database of 20 person's faces with varying scale and pose obtained on different complex backgrounds. The performance of the face recognizer was also quite good except for sensitivity to small scale face images. The integrated system achieved average recognition rates of 87% to 92%.

Classification of Underwater Transient Signals Using MFCC Feature Vector (MFCC 특징 벡터를 이용한 수중 천이 신호 식별)

  • Lim, Tae-Gyun;Hwang, Chan-Sik;Lee, Hyeong-Uk;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.675-680
    • /
    • 2007
  • This paper presents a new method for classification of underwater transient signals, which employs frame-based decision with Mel Frequency Cepstral Coefficients(MFCC). The MFCC feature vector is extracted frame-by-frame basis for an input signal that is detected as a transient signal, and Euclidean distances are calculated between this and all MFCC feature. vectors in the reference database. Then each frame of the detected input signal is mapped to the class having minimum Euclidean distance in the reference database. Finally the input signal is classified as the class that has maximum mapping rate in the reference database. Experimental results demonstrate that the proposed method is very promising for classification of underwater transient signals.