• Title/Summary/Keyword: Feature map correlation

Search Result 35, Processing Time 0.023 seconds

Object Tracking using Feature Map from Convolutional Neural Network (컨볼루션 신경망의 특징맵을 사용한 객체 추적)

  • Lim, Suchang;Kim, Do Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.126-133
    • /
    • 2017
  • The conventional hand-crafted features used to track objects have limitations in object representation. Convolutional neural networks, which show good performance results in various areas of computer vision, are emerging as new ways to break through the limitations of feature extraction. CNN extracts the features of the image through layers of multiple layers, and learns the kernel used for feature extraction by itself. In this paper, we use the feature map extracted from the convolution layer of the convolution neural network to create an outline model of the object and use it for tracking. We propose a method to adaptively update the outline model to cope with various environment change factors affecting the tracking performance. The proposed algorithm evaluated the validity test based on the 11 environmental change attributes of the CVPR2013 tracking benchmark and showed excellent results in six attributes.

Topographic mapping using digital map Ver.2.0 (수치지도 Ver.2.0을 이용한 종이지도제작기법 개발)

  • 황창섭;정성혁;함창학;이재기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.281-286
    • /
    • 2003
  • Since National Geographic Information System was started, paper maps have been made with computer aided editing of digital map, instead of etching map-size negative film. Automated paper mapping system's necessity is growing more and more, because digital map has changed into Ver.2.0 which include attributes of feature. Therefore, in this study we try to analyze correlation of the digital map feature code and the 1/5,000 topographic map specifications which is necessary for paper mapping automatization using digital map Ver.2.0, and try to develop fundamental modules which will play a core role in automated paper mapping system.

  • PDF

Development of Digital map Ver.2.0 representation conversion system for 1/5,000 Topographic mapping (1/5,000 지형도제작을 위한 수치지도 Ver.2.0 자료변환 시스템 개발)

  • 황창섭;이재기
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.321-328
    • /
    • 2004
  • Since National Geographic Information System was started, topographic maps have been made with computer aided editing of digital map, instead of etching map-size negative film. topographic mapping system's necessity is growing more and more, because digital map has changed into Ver.2.0 which include attributes of feature. On the basis of the previous study for analyzing correlation between the digital map feature code and the 1/5,000 topographic map specifications and trying to develop fundamental modules which will play a core role in topographic mapping system, in this study, we apply some 1/5,000 digital maps Ver.2.0 to topographic mapping system have implemented and try to analyze the result.

  • PDF

Small Scale Digital Mapping using Airborne Digital Camera Image Map (디지털 항공영상의 도화성과를 이용한 소축척 수치지도 제작)

  • Choi, Seok-Keun;Oh, Eu-Gene
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • This study analyzed the issues and its usefulness of drawing small-scale digital map by using the large-scale digital map which was producted with high-resolution digital aerial photograph which are commonly photographed in recent years. To this end, correlation analysis of the feature categories on the digital map was conducted, and this map was processed by inputting data, organizing, deleting, editing, and supervising feature categories according to the generalization process. As a result, 18 unnecessary feature codes were deleted, and the accuracy of 1/5,000 for the digital map was met. Although the size of the data and the number of feature categories increased, this was proven to be shown due to the excellent description of the digital aerial photograph. Accordingly, it was shown that drawing a small-scale digital map with the large-scale digital map by digital aerial photograph provided excellent description and high-quality information for digital map.

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

Visual object tracking using inter-frame correlation of convolutional feature maps (컨볼루션 특징 맵의 상관관계를 이용한 영상물체추적)

  • Kim, Min-Ji;Kim, Sungchan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.219-225
    • /
    • 2016
  • Visual object tracking is one of the key tasks in computer vision. Robust trackers should address challenging issues such as fast motion, deformation, occlusion and so on. In this paper, we therefore propose a visual object tracking method that exploits inter-frame correlations of convolutional feature maps in Convolutional Neural Net (ConvNet). The proposed method predicts the location of a target by considering inter-frame spatial correlation between target location proposals in the present frame and its location in the previous frame. The experimental results show that the proposed algorithm outperforms the state-of-the-art work especially in hard-to-track sequences.

A robust Correlation Filter based tracker with rich representation and a relocation component

  • Jin, Menglei;Liu, Weibin;Xing, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5161-5178
    • /
    • 2019
  • Correlation Filter was recently demonstrated to have good characteristics in the field of video object tracking. The advantages of Correlation Filter based trackers are reflected in the high accuracy and robustness it provides while maintaining a high speed. However, there are still some necessary improvements that should be made. First, most trackers cannot handle multi-scale problems. To solve this problem, our algorithm combines position estimation with scale estimation. The difference from the traditional method in regard to the scale estimation is that, the proposed method can track the scale of the object more quickly and effective. Additionally, in the feature extraction module, the feature representation of traditional algorithms is relatively simple, and furthermore, the tracking performance is easily affected in complex scenarios. In this paper, we design a novel and powerful feature that can significantly improve the tracking performance. Finally, traditional trackers often suffer from model drift, which is caused by occlusion and other complex scenarios. We introduce a relocation component to detect object at other locations such as the secondary peak of the response map. It partly alleviates the model drift problem.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction (인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정)

  • Park Sung-Kee;Park Mignon;Lee Taigun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.