• 제목/요약/키워드: Feature map

검색결과 820건 처리시간 0.03초

배경을 제외한 영상에서 명암과 특징을 기반으로하는 스테레오 정합 (Stereok Matching based on Intensity and Features for Images with Background Removed)

  • 최태은;권혁민;박종승;한준희
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제26권12호
    • /
    • pp.1482-1496
    • /
    • 1999
  • 기존의 스테레오 정합 알고리즘은 크게 명암기반기법과 특징기반기법의 두 가지로 나눌 수 있다. 그리고, 각 기법은 그들 나름대로의 장단점을 갖는다. 본 논문은 이 두 기법을 결합하는 새로운 알고리즘을 제안한다. 본 논문에서는 물체모델링을 목적으로 하기 때문에 배경을 제거하여 정합하는 방법을 사용한다. 이를 위해, 정합요소들과 정합유사함수가 정의되고, 정합유사함수는 두 기법사이의 장단점을 하나의 인수에 의해 조절한다. 그 외에도 거리차 지도의 오류를 제거하는 coarse-to-fine기법, 폐색문제를 해결하는 다중윈도우 기법을 사용하였고, 물체의 표면형태를 알아내기 위해 morphological closing 연산자를 이용하여 물체와 배경을 분리하는 방법을 제안하였다. 이러한 기법들을 기반으로 하여 여러가지 영상에 대해 실험을 수행하였으며, 그 결과들은 본 논문이 제안하는 기법의 효율성을 보여준다. 정합의 결과로 만들어지는 거리차 지도는 3차원 모델링을 통해 가상공간상에서 보여지도록 하였다.Abstract Classical stereo matching algorithms can be classified into two major areas; intensity-based and feature-based stereo matching. Each technique has advantages and disadvantages. This paper proposes a new algorithm which merges two main matching techniques. Since the goal of our stereo algorithm is in object modeling, we use images for which background is removed. Primitives and a similarity function are defined. The matching similarity function selectively controls the advantages and disadvantages of intensity-based and feature-based matching by a parameter.As an additional matching strategy, a coarse-to-fine method is used to remove a errorneous data on the disparity map. To handle occlusions, multiple windowing method is used. For finding the surface shape of an object, we propose a method that separates an object and the background by a morphological closing operator. All processes have been implemented and tested with various image pairs. The matching results showed the effectiveness of our method. From the disparity map computed by the matching process, 3D modeling is possible. 3D modeling is manipulated by VRML(Virtual Reality Manipulation Language). The results are summarized in a virtual reality space.

이동창 방식에 의한 고해상도 위성영상에서의 변화탐지 (The Change Detection from High-resolution Satellite Imagery Using Floating Window Method)

  • 임영재;예철수;김경옥
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 한국지형공간정보학회 2002년도 추계학술대회
    • /
    • pp.117-122
    • /
    • 2002
  • 촬영시기가 다른 두 위성영상을 비교 분석하여 시간에 따른 변화정보를 획득하는 변화탐지 기술은 다양한 분야에 유용하게 활용이 가능한 기술이다. 특히 최근 활용기대가 높아지고 있는 고해상도 위성영상을 활용하는 변화탐지 기술은 환경감시, 재해재난 후 피해상황 분석, 불법건축물 감시, 군사적 목적 등 기존의 중 저 해상도 위성영상으로는 얻을 수 없는 유용한 변화정보의 추출이 가능하다. 하지만, 고해상도 위성영상의 특수성으로 인해 저해상도 위성영상에 적용하였던 화소기반 변화탐지 기법을 그대로 사용 할 수 없으며 인공물이나 지형지물의 지리적, 형태학적 특징을 활용하여 변화요소를 탐지하여야 한다. 본 연구에서는 촬영시기가 다른 두 매의 고해상도 위성영상에 대하여 사용자가 신속하고 손쉽게 변화를 감지해 낼 수 있도록 이동창을 이용한 인터페이스를 구성하고, 영상에 대한 육안분석을 통해 사용자가 건물의 신축 및 철거 등 변화를 발견하여 변화지도를 작성할 수 있는 시스템 개발함으로써 반자동 방식에 의한 고해상도 위성영상의 변화탐지 방법을 제시하였다.

  • PDF

한정된 자원을 갖는 FPGA에서의 이진가중치 신경망 가속처리 구조 설계 및 구현 (Design and Implementation of Accelerator Architecture for Binary Weight Network on FPGA with Limited Resources)

  • 김종현;윤상균
    • 전기전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.225-231
    • /
    • 2020
  • 본 연구에서는 임베디드 시스템에 적용하기 위해 자원이 제한된 조건의 FPGA를 기반으로 BWN 가속처리를 하는 방법을 제시하였다. 사용할 수 있는 로직의 개수가 제한적이기 때문에 다양한 크기의 Conv-layer, FC-layer를 처리할 수 있는 하나의 연산장치를 설계해서 재활용하였다. Input feature map 데이터를 한번에 병렬처리를 할 수 없는 경우 데이터를 여러 번 읽어서 중간결과를계산하고 합산하여 최종 출력을 계산하였다. 사용할 수 있는 BRAM 모듈 개수가 제한적이기 때문에 BWN 가속기내의 데이터 bit수를 최소화한 구조를 사용하였다. 구현한 BWN가속기의 이미지 분류 처리 시간은 소형 시스템과 비교하였을 때 처리시간 측면에서 우수함을 보였고 고성능 시스템과 비교하였을 때는 데스크탑 PC보다는 빠르고 높은 클럭속도의 GPU시스템의 50%정도 느렸다. BWN가속기는 50MHz의 느린 clock을 사용하므로 성능대비 전력측면에서 유리함을 확인할 수 있었다.

라인 곡선 곡률 기반의 벡터 데이터 해싱 (Vector Data Hashing Using Line Curve Curvature)

  • 이석환;권기룡
    • 한국통신학회논문지
    • /
    • 제36권2C호
    • /
    • pp.65-77
    • /
    • 2011
  • 최근 CAD 설계도면 및 GIS 디지털 맵과 같은 벡터 데이터 모델의 응용 분야가 확대되면서 이에 대한 보호기술이 필요하게 되었다. 본 논문에서는 벡터 데이터 모델의 인증 또는 복사방지에 펄요한 벡터 데이터 해싱 방법을 제안한다. 제안한 해싱에서는 벡터 데이터 모델 내 주요 레이어 상에 폴리라인들을 그룹화한 다음, 폴리라인의 1차 및 2차 곡선 곡률 분포에 따라 그룹 계수를 생성한다. 그리고 이들 그룹 계수를 랜덤 계수 키 패턴으로 투영기에 의하여 특징 계수를 얻은 다음, 이를 이진화 과정에 의하여 최종 이진 해쉬를 생성한다. 설계도면 및 디지털 맵을 이용한 실험 결과로부터 제안한 방법에 의하여 생성된 해쉬가 다양한 공격에 대한 강인성과 랜텀 키에 의한 보안성 및 유일성을 만족함을 확인하였다.

일정 적응이득과 이진 강화함수를 가진 경쟁학습 신경회로망의 디지탈 칩 개발과 응용에 관한 연구 (A Study on the Hardware Implementation of Competitive Learning Neural Network with Constant Adaptaion Gain and Binary Reinforcement Function)

  • 조성원;석진욱;홍성룡
    • 한국지능시스템학회논문지
    • /
    • 제7권5호
    • /
    • pp.34-45
    • /
    • 1997
  • 본 논문에서는 경쟁학습 신경회로망의 디지탈 칩 구현에서 뉴런의 집적도를 향상시키기 위해 하드웨어 구현이 용이한 새로운 신경회로망 모델로서 일정 적응이득과 이진 강화함수를 가진 여러 가지 경쟁학습 신경회로망 모델들을 제안하고, 그 중 안정성과 분류성능이 가장 우수한 일정 적응이득과 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망의 FPGA위에서의 하드웨어 구현에 대해서 논한다. 원래의 SOFM 알고리즘에서 적응이득이 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 적응이득이 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가한다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현이 용이하다는 특징이있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형태가 단순하면서 반복적이므로 하나의 FPGA 위에서도 다수의 뉴런을 구현 할수 있으며 비교적 소수의 제어신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다.실험 결과 각 구서부분은 모두 이상 없이 올바로동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF

SOFM신경망과 C4.5를 활용한 강의품질 개선 (Improving Lecture Quality using SOFM neural network and C4.5)

  • 이장희
    • 실천공학교육논문지
    • /
    • 제6권2호
    • /
    • pp.71-76
    • /
    • 2014
  • 대학, 기업 및 학원에서 제공하는 교육 서비스의 질을 향상하기 위해서는 주요 활동인 강의의 품질 개선이 필수적이다. 강의 수행 후 수강생에 의해서 평가되는 강의평가 설문 데이터는 강의 품질을 측정하고 개선할 수 있는 좋은 도구로서, 대부분 간단한 통계분석을 통해 처리되고 있다. 본 연구는 강의평가 설문 데이터를 SOFM (Self-Organizing Feature Map) 신경망과 C4.5와 같은 분석도구를 사용하여 분석함으로써 수강생의 만족도와 강의 성과 관련한 특징을 보다 정확하게 파악하고 개선이 필요한 강의 품질 요소를 구체적으로 도출하여 강의 품질을 효율적으로 개선할 수 있는 방안을 제시하였다. 본 연구에서 제시한 방안을 국내 기업의 사내 강의에 적용한 결과, 만족도와 강의 성과 관점에서 미흡한 3개의 수강생 그룹에서 개선이 필요한 총 강의시간, 강의 자료, 강의 시간표 구성 요소를 개선하여 강의 품질이 향상되는 것을 확인하였다.

그라프에서의 휴리스틱 탐색에 관한 연구 (A Study on the Heuristic Search Algorithm on Graph)

  • 김명재;정태충
    • 한국정보처리학회논문지
    • /
    • 제4권10호
    • /
    • pp.2477-2484
    • /
    • 1997
  • $A^{\ast}$와 같은 Best-first 휴리스틱 탐색 알고리즘들은 인공지능 분야에서 많은 문제를 해결하는데 가장 중요한 기법들 중의 하나이다. 휴리스틱 탐색의 공통적 특성은 계산의 복잡도가 매우 높다는 것이며, 이는 수많은 노드를 가진 지도에서 경로를 찾는 것과 같은 실질적인 문제 영역에 적용되기 어렵다는 것을 나타낸다. 본 논문에서는, 몇몇 휴리스틱 탐색 알고리즘이 언급되고, path-sensitive heuristic이라 불리는 새로운 동적 가중치 휴리스틱 방법이 제안되었다. 이 방법은 동적 가중치 휴리스틱에 기초하였고, 동적 휴리스틱은 admissible heuristic을 허용하지 않거나 휴리스틱의 정확도가 떨어지는 실제 문제 영역에서 탐색 노력을 줄이는데 사용될 수 있다. 탐색 과정 동안 ${\omega}$(가중치)가 동적으로 조정된다는 점에서, 다른 동적 가중치 휴리스틱 알고리즘과 구분된다.

  • PDF

인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법 (Local Region Spectral Analysis for Performance Enhancement of Dementia Classification)

  • 박준규;백성준
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5150-5155
    • /
    • 2011
  • 인지증을 유발하는 원인은 알츠하이머병(Alzheimer's Disease: AD)과 혈관성 인지증(vascular Dementia: VD)이 가장 높은 비율을 차지한다. 본 논문에서는 측정된 라만 스펙트럼에서 AD, VD, 정상(NOR: normal)을 분류하기 위해 변별력 있는 영역을 조사하고, 특징 변환을 이용한 분류 실험 결과를 제시하였다. 혈소판으로부터 측정한 라만 스펙트럼은 먼저 smoothing을 적용한 다음 배경 잡음을 제거하고 스펙트럼의 기준 피크를 중심으로 그 위치를 정렬하였고 minmax 방법을 사용하여 정규화 하였다. 전처리를 거친 스펙트럼은 AD와 VD, NOR를 변별하기 가장 용이한 영역을 결정하기 위해 조사되었으며, 그 결과 725-777, 1504-1592, 1632-1700 $cm^{-1}$ 영역에서 스펙트럼이 많은 차이를 보임을 확인하였다. 분류 실험은 선택한 각 영역에 대하여 PCA(principal component analysis)와 NMF(nonnegative matrix factorization) 방법을 적용하여 얻은 특징을 이용하여 행하였다. 총 327개의 라만 스펙트럼에 대한 MAP(maximum a posteriori probability) 분류 실험 결과에 따르면, 본 연구에서 제안된 국부 영역 변환 특징을 사용했을 때 평균 92.8 %의 분류율을 보임을 알 수 있었다.

정규화를 이용한 변동계수 기반 안개 특징의 하드웨어 구현 (Hardware Implementation of Fog Feature Based on Coefficient of Variation Using Normalization)

  • 강의진;강봉순
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.819-824
    • /
    • 2021
  • 자율 주행이나 CCTV와 같이 영상 처리 관련 기술들이 발전함에 따라 영상 왜곡에 대한 문제점을 개선하기 위해 단일 영상을 이용한 안개 제거 알고리즘이 연구되고 있다. 안개 밀도 예측 방법으로는 깊이 맵을 생성하여 영상의 깊이를 추정하는 방법이 있고, 깊이 맵의 학습 데이터로 다양한 안개 특징을 사용할 수 있다. 또한 안개 제거 알고리즘을 실제 기술들에 적용하기 위해 고화질 영상을 실시간으로 처리할 수 있는 하드웨어 구현은 필수적이다. 본 논문에서는 변동계수 기반의 안개 특징인 NLCV(Normalize Local Coefficient of Variation)를 하드웨어로 구현한다. 제안하는 하드웨어는 Xilinx 사의 xczu7ev-2ffvc1156을 Target device로 FPGA 구현하였다. Vivado 프로그램을 통해 합성한 결과 479.616MHz의 최대 동작 주파수를 가지며 4K UHD(3840×2160) 환경에서 실시간 처리 가능함을 보인다.

특성맵 차분을 활용한 커널 기반 비디오 프레임 보간 기법 (Kernel-Based Video Frame Interpolation Techniques Using Feature Map Differencing)

  • 서동혁;고민성;이승학;박종혁
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제13권1호
    • /
    • pp.17-27
    • /
    • 2024
  • 비디오 프레임 보간(Video Frame Interpolation)은 움직임의 연속성을 증가시켜 영상을 부드럽게 재생할 수 있어 영상, 미디어 분야에서 사용되는 중요한 기술이다. 딥러닝 기반 비디오 프레임 보간 연구에서 널리 사용되는 방법 중 하나인 커널 기반 방법(Kernel Based Method)의 경우, 지역적인 변화를 잘 포착하지만 전체적인 변화를 처리하는 데 한계가 있었다. 이에 본 논문에서는 주요 변화 포착에 집중하기 위한 특성맵 차분, Two Direction을 적용한 새로운 U-Net 구조를 통해 파라미터 수를 줄이면서 중간 프레임을 보다 정확하게 생성하고자 한다. 실험 결과 제안한 구조가 기존보다 Vimeo, Middle-burry 등의 일반적인 데이터셋과 새로운 YouTube 데이터셋에서 기존 모델보다 약 61% 더 적은 파라미터로 PSNR 수치가 최대 0.3 우수한 성능을 달성하였다. 본 논문에서 사용한 코드는 https://github.com/Go-MinSeong/SF-AdaCoF에서 확인 가능하다.