• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.03 seconds

Determining Key Features of Recognition Korean Traditional Music Using Spectrogram

  • Kim Jae Chun;Kwak Kyung Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.2E
    • /
    • pp.67-70
    • /
    • 2005
  • To realize a traditional music recognition system, some characteristics pertinent to Far East Asian music should be found. Using Spectrogram, some distinct attributes of Korean traditional music are surveyed. Frequency distribution, beat cycle and frequency energy intensity within samples have distinct characteristics of their own. Experiment is done for pre-experimentation to realize Korean traditional music recognition system. Using characteristics of Korean traditional music, $94.5\%$ of classification accuracy is acquired. As Korea, Japan and China have the same musical roots, both in instruments and playing style, analyzing Korean traditional music can be helpful in the understanding of Far East Asian traditional music.

Automatic Extraction of Pseudo Invariant Features using Ordinal Rank Algorithm for Radiometric Normalization (Ordinal Rank 알고리즘을 이용한 자동 PIF 추출 - 변화탐지를 위한 상대방사정규화를 목적으로)

  • Han, You-Kyung;Kim, Dae-Sung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.213-218
    • /
    • 2008
  • 동일 지점을 촬영한 위성영상은 위성의 센서나 영상의 취득 시기, 지형의 상태 등에 따라 그 지점에 나타나는 화소값이 일정하지 않다. 이러한 영상은 영상간 모자이크나 변화 탐지 결과에 영향을 미칠 가능성이 높으므로 방사보정(또는 방사정규화)을 통해 화소값의 차이를 최소화시킬 필요가 있다. 본 연구는 선형회귀식을 적용한 상대 방사정규화에 초점을 맞추고 있으며, 선형회귀식 구성에 필요한 PIF(Pseudo Invariant Feature)를 자동으로 추출하기 위해 Ordinal Rank 알고리즘을 적용하였다. 이 방법을 통해 각 밴드별 후보 PIF를 추출하고, 공통으로 해당되는 최종 PIF를 추출할 수 있었다. RMSE(Root Mean Square Error), Dynamic range, Coefficient of variation 등을 통해 방사보정 후의 결과를 평가해보았다. 영상회귀를 이용한 방사보정알고리즘과의 비교를 통해 제안된 알고리즘이 갖는 장점을 확인하였다.

  • PDF

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.

A Novel Multiple Kernel Sparse Representation based Classification for Face Recognition

  • Zheng, Hao;Ye, Qiaolin;Jin, Zhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1463-1480
    • /
    • 2014
  • It is well known that sparse code is effective for feature extraction of face recognition, especially sparse mode can be learned in the kernel space, and obtain better performance. Some recent algorithms made use of single kernel in the sparse mode, but this didn't make full use of the kernel information. The key issue is how to select the suitable kernel weights, and combine the selected kernels. In this paper, we propose a novel multiple kernel sparse representation based classification for face recognition (MKSRC), which performs sparse code and dictionary learning in the multiple kernel space. Initially, several possible kernels are combined and the sparse coefficient is computed, then the kernel weights can be obtained by the sparse coefficient. Finally convergence makes the kernel weights optimal. The experiments results show that our algorithm outperforms other state-of-the-art algorithms and demonstrate the promising performance of the proposed algorithms.

Recognition of Partial Discharge Patterns (부분방전 패턴의 인식)

  • 이준호;이진우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.8-17
    • /
    • 2000
  • In this work, two approaches were proposed for the recognition of partial discharge patterns. The first approach was neural network with backpropagation algorithm, and the second approach was angle calculation between t재 operator vectors. PD signals were detected using three electrode systems; IEC(b), needle-plane and CIGRE method II electrode system. Both of neural network and angle comparison method showed good recognition performance for the patterns similar to the trained patterns. And the number of operators to be used had a great influence on the recognition performance to the untrained patterns.

  • PDF

An Effective Framework for Contented-Based Image Retrieval with Multi-Instance Learning Techniques

  • Peng, Yu;Wei, Kun-Juan;Zhang, Da-Li
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.18-22
    • /
    • 2007
  • Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

  • PDF

Multiresolution Independent Component Analysis for Iris Identification

  • Noh, Seung-In;Kwanghuk Pae;Lee, Chulhan;Kim, Jaihie
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1674-1677
    • /
    • 2002
  • In this paper, the new method to extract the features of iris signals is proposed; Multiresolution ICA (M-ICA) provides good properties to represent signals with time-frequency. The conventional methods were to use the technique of filter bank analysis, while ICA is unsupervised learning algorithm using high-order statistics. M-ICA could make use of strengths of learn- ing method and multiresolution. Also, we performed comparative studies of different feature extraction techniques applied to personal identification using iris pat- tern. To measure goodness of methods, we use Fisher’s discriminant ratio to quantify the class-separability of features generated by various techniques.

  • PDF

A study of face detection using color component (색상요소를 고려한 얼굴검출에 대한 연구)

  • 이정하;강진석;최연성;김장형
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.240-243
    • /
    • 2002
  • In this paper, we propose a face region detection based on skin-color distribution and facial feature extraction algorithm in color still images. To extract face region, we transform color using general skin-color distribution. Facial features are extracted by edge transformation. This detection process reduces calculation time by a scale-down scanning from segmented region. we can detect face region in various facial Expression, skin-color deference and tilted face images.

  • PDF

Development of a Real-time Voice Recognition Dialing System; (실시간 음성인식 다이얼링 시스템 개발)

  • 이세웅;최승호;이미숙;김흥국;오광철;김기철;이황수
    • Information and Communications Magazine
    • /
    • v.10 no.10
    • /
    • pp.22-29
    • /
    • 1993
  • This paper describes development of a real-time voice recognition dialing system which can recognize around one hundred word vocabularies in speaker independent mode. The voice recognition algorithm is implemented on a DSP board with a telephone interface plugged in an IBM PC AT/486. In the DSP board, procedures for feature extraction, vector quantization(VQ), and end-point detection are performed simultaneously in every 10msec frame interval to satisfy real-time constraints after the word starting point detection. In addition, we optimize the VQ codebook size and the end-point detection procedure to reduce recognition time and memory requirement. The demonstration system is being displayed in MOBILAB of Korea Mobile Telecom at the Taejon EXPO '93.

  • PDF

A Study on Motor Imagery Feature Extraction Algorithm Performance Comparison based on EEG (EEG기반 동작 상상 특징 추출 알고리즘 성능 비교에 관한 연구)

  • Jeong, Haesung;Lee, Sangmin;Kwon, Jangwoo
    • Annual Conference of KIPS
    • /
    • 2016.04a
    • /
    • pp.847-850
    • /
    • 2016
  • 뇌-컴퓨터 인터페이스(Brain-Computer Interface: BCI) 기술의 중요성 및 활용도가 증대됨으로써 EEG(electroencephalogram: EEG)기반의 사용자 인터페이스에 대한 개발 및 연구가 활발히 진행되고 있다. 그러나 뇌파 발생 훈련이 되어 있지 않은 사용자는 EEG 기반의 사용자 인터페이스를 사용하기가 어렵다. 따라서 본 논문에서는 향후 뇌파 훈련을 위한 시뮬레이터를 개발하고자, 그 전단계로 사용자에게서 공통적으로 정확도가 높게 측정되는 채널 및 특징점을 비교, 분석 하였다. 피험자 3명의 왼손 동작 상상과 오른손 동작 상상으로 발생된 EEG 생체신호로부터 ERD/ERS를 확인하고, 8개의 특징점을 추출하여 SVM 분류 알고리즘을 기반으로 정확도를 측정하였으며, ${\mu}$대역 채널 AF4, F4에서의 특징 MAV에서 가장 우수한 성능을 보였다.