• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.03 seconds

Speech/Mixed Content Signal Classification Based on GMM Using MFCC (MFCC를 이용한 GMM 기반의 음성/혼합 신호 분류)

  • Kim, Ji-Eun;Lee, In-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.185-192
    • /
    • 2013
  • In this paper, proposed to improve the performance of speech and mixed content signal classification using MFCC based on GMM probability model used for the MPEG USAC(Unified Speech and Audio Coding) standard. For effective pattern recognition, the Gaussian mixture model (GMM) probability model is used. For the optimal GMM parameter extraction, we use the expectation maximization (EM) algorithm. The proposed classification algorithm is divided into two significant parts. The first one extracts the optimal parameters for the GMM. The second distinguishes between speech and mixed content signals using MFCC feature parameters. The performance of the proposed classification algorithm shows better results compared to the conventionally implemented USAC scheme.

Cost-Sensitive Case Based Reasoning using Genetic Algorithm: Application to Diagnose for Diabetes

  • Park Yoon-Joo;Kim Byung-Chun
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.327-335
    • /
    • 2006
  • Case Based Reasoning (CBR) has come to be considered as an appropriate technique for diagnosis, prognosis and prescription in medicine. However, canventional CBR has a limitation in that it cannot incorporate asymmetric misclassification cast. It assumes that the cast of type1 error and type2 error are the same, so it cannot be modified according ta the error cast of each type. This problem provides major disincentive to apply conventional CBR ta many real world cases that have different casts associated with different types of error. Medical diagnosis is an important example. In this paper we suggest the new knowledge extraction technique called Cast-Sensitive Case Based Reasoning (CSCBR) that can incorporate unequal misclassification cast. The main idea involves a dynamic adaptation of the optimal classification boundary paint and the number of neighbors that minimize the tatol misclassification cast according ta the error casts. Our technique uses a genetic algorithm (GA) for finding these two feature vectors of CSCBR. We apply this new method ta diabetes datasets and compare the results with those of the cast-sensitive methods, C5.0 and CART. The results of this paper shaw that the proposed technique outperforms other methods and overcomes the limitation of conventional CBR.

  • PDF

A Feature Extraction Method in Iris Image for Biometrics (생체인식을 위한 홍채영상의 특징 추출)

  • Kim Sin-Hong;Cho Yong-Hwan;Kim Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.5
    • /
    • pp.59-64
    • /
    • 2005
  • The biometrics of iris is a very accurate authentication method. The biometrics of iris can recognize and identify a person for shortly. But the image of iris is changed by transformation of body in the life. The existing iris authentication system has problem that can be mis-recognized. In this paper, we proposed and implemented Renewable Iris Authentication Algorithm(RIAA) for biometrics in authentication system. This algorithm tries to present a new way to people identification, we show contour line when shift take photograph in regular side. Namely, it generate iris code based on boundary of projection or submergence side and compared to original, so that it describes iris identification method to people identification.

  • PDF

Improved Edge Detection Algorithm Using Ant Colony System (개미 군락 시스템을 이용한 개선된 에지 검색 알고리즘)

  • Kim In-Kyeom;Yun Min-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.315-322
    • /
    • 2006
  • Ant Colony System(ACS) is easily applicable to the traveling salesman problem(TSP) and it has demonstrated good performance on TSP. Recently, ACS has been emerged as the useful tool for the pattern recognition, feature extraction, and edge detection. The edge detection is wifely utilized in the area of document analysis, character recognition, and face recognition. However, the conventional operator-based edge detection approaches require additional postprocessing steps for the application. In the present study, in order to overcome this shortcoming, we have proposed the new ACS-based edge detection algorithm. The experimental results indicate that this proposed algorithm has the excellent performance in terms of robustness and flexibility.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Design and Implementation of Eye-Gaze Estimation Algorithm based on Extraction of Eye Contour and Pupil Region (눈 윤곽선과 눈동자 영역 추출 기반 시선 추정 알고리즘의 설계 및 구현)

  • Yum, Hyosub;Hong, Min;Choi, Yoo-Joo
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this study, we design and implement an eye-gaze estimation system based on the extraction of eye contour and pupil region. In order to effectively extract the contour of the eye and region of pupil, the face candidate regions were extracted first. For the detection of face, YCbCr value range for normal Asian face color was defined by the pre-study of the Asian face images. The biggest skin color region was defined as a face candidate region and the eye regions were extracted by applying the contour and color feature analysis method to the upper 50% region of the face candidate region. The detected eye region was divided into three segments and the pupil pixels in each pupil segment were counted. The eye-gaze was determined into one of three directions, that is, left, center, and right, by the number of pupil pixels in three segments. In the experiments using 5,616 images of 20 test subjects, the eye-gaze was estimated with about 91 percent accuracy.

  • PDF

Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment (IOT 환경에서의 오토인코더 기반 특징 추출을 이용한 네트워크 침입탐지 시스템)

  • Lee, Joohwa;Park, Keehyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.483-490
    • /
    • 2019
  • In the Network Intrusion Detection System (NIDS), the function of classification is very important, and detection performance depends on various features. Recently, a lot of research has been carried out on deep learning, but network intrusion detection system experience slowing down problems due to the large volume of traffic and a high dimensional features. Therefore, we do not use deep learning as a classification, but as a preprocessing process for feature extraction and propose a research method from which classifications can be made based on extracted features. A stacked AutoEncoder, which is a representative unsupervised learning of deep learning, is used to extract features and classifications using the Random Forest classification algorithm. Using the data collected in the IOT environment, the performance was more than 99% when normal and attack traffic are classified into multiclass, and the performance and detection rate were superior even when compared with other models such as AE-RF and Single-RF.

A Study on the Extraction of Nail's Region from PC-based Hand-Geometry Recognition System Using GA (GA를 이용한 PC 기반 Hand-Geometry 인식시스템의 Nail 영역 추출에 관한 연구)

  • Kim, Young-Tak;Kim, Soo-Jong;Park, Ju-Won;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.506-511
    • /
    • 2004
  • Biometrics is getting more and more attention in recent years for security and other concerns. So far, only fingerprint recognition has seen limited success for on-line security check, since other biometrics verification and identification systems require more complicated and expensive acquisition interfaces and recognition processes. Hand-Geometry has been used for biometric verification and identification because of its acquisition convenience and good performance for verification and identification performance. Hence, it can be a good candidate for online checks. Therefore, this paper proposes a Hand-Geometry recognition system based on geometrical features of hand. From anatomical point of view, human hand can be characterized by its length, width, thickness, geometrical composition, shapes of the palm, and shape and geometry of the fingers. This paper proposes thirty relevant features for a Hand-Geometry recognition system. However, during experimentation, it was discovered that length measured from the tip of the finger was not a reliable feature. Hence, we propose a new technique based on Genetic Algorithm for extraction of the center of nail bottom, in order to use it for the length feature.