• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.03 seconds

Study on video character extraction and recognition (비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종렬;김성섭;문영식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.141-144
    • /
    • 2001
  • In this paper, a new algorithm for extracting and recognizing characters from video, without pre-knowledge such as font, color, size of character, is proposed. To improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text region are automatically detected to compose an average frame. Using boundary pixels of a text region as seeds, we apply region filling to remove background from the character Then color clustering is applied to remove remaining backgrounds according to the verification of region filling process. Features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with a pre-composed character feature set to recognize the characters.

  • PDF

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.

Identification of Underwater Ambient Noise Sources Using MFCC (MFCC를 이용한 수중소음원의 식별)

  • Hwang, Do-Jin;Kim, Jea-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.307-310
    • /
    • 2006
  • Underwater ambient noise originating from the geophysical, biological, and man-made acoustic sources contains much information on the sources and the ocean environment affecting the performance of the sonar equipments. In this paper, a set of feature vectors of the ambient noises using MFCC is proposed and extracted to form a data base for the purpose of identifying the noise sources. The developed algorithm for the pattern recognition is applied to the observed ocean data, and the initial results are presented and discussed.

  • PDF

Extraction of core and delta Points in Fingerprint (지문에서 코아와 델타의 추출)

  • Jeong, Yang-Kwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.42-48
    • /
    • 1994
  • Recently pictorial information processing has become increasingly important So, this paper described that feature points of fingerprint used to recognize fingerprints for identification in a government or arresting criminals in an institution like a police station related to crime. We apply an algorithm based on minimization of fuzzy theory to thinning and then the image into a certain size of squares. We have got some information about cores and deltas from the data encoding Into one of the eight directional codes. We could extract about $80\%$ feature points as the result of the experiment.

  • PDF

A study on the machining feature extraction algorithm for turning (선삭가공에 있어서의 가공 특징형상 추출 알고리즘에 관한 연구)

  • 양민양;이성찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.434-439
    • /
    • 1995
  • 본 논문에서는 선삭가공을 부품에 대한 가공 특징형상 추출 알고리즘을 개발하였다. 면저, 설계 특징형상과 가공 특징형상 을 효율적으로 나타내기 위한 데이터 구조를 설계하고, 선삭가공에 사용되는 가공 특징형상의 특성을 검토하였다. 이러한 특성 을 이용하여 주사선(Scan Line)과의 교점으로부터 가공 특징형상을 이루는 요소를 검색하고, 검색된 구성요소를 이용하여 가공 특정형상을 구성하였다. 본 연구에서 개발된 알고리즘은 기존에 사용되어 왔던 패턴비교 방법에서 주어지 패턴이외의 특징 형상을 추출하기가 어렵고 계산 시간이 많이 걸리는 단점을 극복하였다. 또한 기존의 방법으로는 해결되기 어럽던 가공 특징 형상 의 간섭의 검출에서 효율적으로 적용됨을 확인하였다.

  • PDF

A Low Complexity, Descriptor-Less SIFT Feature Tracking System

  • Fransioli, Brian;Lee, Hyuk-Jae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.269-270
    • /
    • 2012
  • Features which exhibit scale and rotation invariance, such as SIFT, are notorious for expensive computation time, and often overlooked for real-time tracking scenarios. This paper proposes a descriptorless matching algorithm based on motion vectors between consecutive frames to find the geometrically closest candidate to each tracked reference feature in the database. Descriptor-less matching forgoes expensive SIFT descriptor extraction without loss of matching accuracy and exhibits dramatic speed-up compared to traditional, naive matching based trackers. Descriptor-less SIFT tracking runs in real-time on an Intel dual core machine at an average of 24 frames per second.

  • PDF

3D View Synthesis with Feature-Based Warping

  • Hu, Ningning;Zhao, Yao;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5506-5521
    • /
    • 2017
  • Three-dimensional video (3DV), as the new generation of video format standard, can provide the viewers with a vivid screen sense and a realistic stereo impression. Meanwhile the view synthesis has become an important issue for 3DV application. Differently from the conventional methods based on depth, in this paper we propose a new view synthesis algorithm, which can employ the correlation among views and warp in the image domain only. There are mainly two contributions. One is the incorporation of sobel edge points into feature extraction and matching, which can obtain a better stable homography and then a visual comfortable synthesis view compared to SIFT points only. The other is a novel image blending method proposed to obtain a better synthesis image. Experimental results demonstrate that the proposed method can improve the synthesis quality both in subjectivity and objectivity.

A Study on Real-Time Recognition of Car license Plate Using Neural (인공신경회로망을 이용한 실시간 차량번호판 인식에 관한 연구)

  • Kim, Seong-H.;Lee, Young-J.;Chang, Yong-H.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.507-509
    • /
    • 1997
  • One of the most difficult tasks in the process of car license plate is the extraction of each character from within license plate region. This paper presents a real-time recognition of car licence number using neural network in parking lot. The feature parameters of letters and numbers of license plate are extracted by thinning algorithm. Both feature parameters are used to train neural networks for the image recognition.

  • PDF

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.

A Study on the Feature Region Segmentation for the Analysis of Eye-fundus Images (안저영상(眼低映像) 해석(解析)을 위한 특징영성(特徵領域)의 분할(分割)에 관한 연구(硏究))

  • Kang, Jeon-Kwun;Kim, Seung-Bum;Ku, Ja-Yl;Han, Young-Hwan;Hong, Hong-Seung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.11
    • /
    • pp.27-30
    • /
    • 1993
  • Information about retinal blood vessels can be used in grading disease severity or as part of the process of automated diagnosis of diseases with ocular menifestations. In this paper, we address the problem of detecting retinal blood vessels and optic disk (papilla) in Eye-fundus images. We introduce an algorithm for feature extraction based on Fuzzy festering(FCM). The results ore compared to those obtained with other methods. The automatic detection of retinal blood vessels and optic disk in the Eye-fundus images could help physicians in diagnosing ocular diseases.

  • PDF