• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.029 seconds

Stereo Matching Based on Edge and Area Information (경계선 및 영역 정보를 이용한 스테레오 정합)

  • 한규필;김용석;하경훈;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1591-1602
    • /
    • 1995
  • A hybrid approach which includes edge- and region-based methods is considered. The modified non-linear Laplacian(MNL) filter is used for feature extraction. The matching algorithm has three steps which are edge, signed region, and residual region matching. At first, the edge points are matched using the sign and direction of edges. Then, the disparity is propagated from edge to inside region. A variable window is used to consider the local method which give accurate matched points and area-based method which can obtain full-resolution disparity map. In addition, a new relaxation algorithm for considering matching possibility derived from normalized error and regional continuity constraint is proposed to reduce the mismatched points. By the result of simulation for various images, this algorithm is insensitive to noise and gives full- resolution disparity map.

  • PDF

Estimation of gender and age using CNN-based face recognition algorithm

  • Lim, Sooyeon
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.203-211
    • /
    • 2020
  • This study proposes a method for estimating gender and age that is robust to various external environment changes by applying deep learning-based learning. To improve the accuracy of the proposed algorithm, an improved CNN network structure and learning method are described, and the performance of the algorithm is also evaluated. In this study, in order to improve the learning method based on CNN composed of 6 layers of hidden layers, a network using GoogLeNet's inception module was constructed. As a result of the experiment, the age estimation accuracy of 5,328 images for the performance test of the age estimation method is about 85%, and the gender estimation accuracy is about 98%. It is expected that real-time age recognition will be possible beyond feature extraction of face images if studies on the construction of a larger data set, pre-processing methods, and various network structures and activation functions have been made to classify the age classes that are further subdivided according to age.

Two-wheelers Detection using Local Cell Histogram Shift and Correlation (국부적 Cell 히스토그램 시프트와 상관관계를 이용한 이륜차 인식)

  • Lee, Sanghun;Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1418-1429
    • /
    • 2014
  • In this paper we suggest a new two-wheelers detection algorithm using local cell features. The first, we propose new feature vector matrix extraction algorithm using the correlation two cells based on local cell histogram and shifting from the result of histogram of oriented gradients(HOG). The second, we applied new weighting values which are calculated by the modified histogram intersection showing the similarity of two cells. This paper applied the Adaboost algorithm to make a strong classification from weak classification. In this experiment, we can get the result that the detection rate of the proposed method is higher than that of the traditional method.

Separation of Blind Signals Using Robust ICA Based-on Neural Networks (신경망 기반 Robust ICA에 의한 은닉신호의 분리)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • This paper proposes a separation of mixed signals by using the robust independent component analysis(RICA) based on neural networks. RICA is based on the temporal correlations and the second order statistics of signal. This method e is applied for improving the analysis rate and speed in which the sources have very small or zero kurtosis. The proposed method has been applied for separating the 10 mixed finger prints of $256{\times}256$-pixel and the 4 mixed images of $512{\times}512$-pixel, respectively. The simulation results show that RICA has the separating rate and speed better than those using the conventional FP algorithm based on Newton method.

  • PDF

Object Recognition Algorithm with Partial Information

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.229-235
    • /
    • 2019
  • Due to the development of video and optical technology today, video equipments are being used in a variety of fields such as identification, security maintenance, and factory automation systems that generate products. In this paper, we investigate an algorithm that effectively recognizes an experimental object in an input image with a partial problem due to the mechanical problem of the input imaging device. The object recognition algorithm proposed in this paper moves and rotates the vertices constituting the outline of the experimental object to the positions of the respective vertices constituting the outline of the DB model. Then, the discordance values between the moved and rotated experimental object and the corresponding DB model are calculated, and the minimum discordance value is selected. This minimum value is the final discordance value between the experimental object and the corresponding DB model, and the DB model with the minimum discordance value is selected as the recognition result for the experimental object. The proposed object recognition method obtains satisfactory recognition results using only partial information of the experimental object.

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

The Extraction of Exact Building Contours in Aerial Images (항공 영상에서의 인공지물의 정확한 경계 추출)

  • 최성한;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.1
    • /
    • pp.47-64
    • /
    • 1995
  • In this paper, an algorithm that finds man-made structures in a praylevel aerial images is proposed to perform stereo matching. An extracted contour of buildings must have a high accuracy in order to get a good feature-based stereo matching result. Therefore this study focuses on the use of edge following in the original image rather than use of ordinary edge filters. The Algorithm is composed of two main categories; one is to find candidate regions in the whole image and the other is to extract exact contours of each building which each candidate region.. The region growing method using the centroid linkage method of variance value is used to find candidate regions of building and the contour line tracing algorithm based on an adge following method is used to extract exact contours. The result shows that the almost contours of building composed of line segments are extracted.

Face Detection using AdaBoost and ASM (AdaBoost와 ASM을 활용한 얼굴 검출)

  • Lee, Yong-Hwan;Kim, Heung-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image (실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계)

  • Oh, Sung-Kwun;Seok, Jin-Wook;Kim, Ki-Sang;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

Optimizing Feature Extractioin for Multiclass problems Based on Classification Error (다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.39-49
    • /
    • 2000
  • In this paper, we propose an optimizing feature extraction method for multiclass problems assuming normal distributions. Initially, We start with an arbitrary feature vector Assuming that the feature vector is used for classification, we compute the classification error Then we move the feature vector slightly in the direction so that classification error decreases most rapidly This can be done by taking gradient We propose two search methods, sequential search and global search In the sequential search, an additional feature vector is selected so that it provides the best accuracy along with the already chosen feature vectors In the global search, we are not constrained to use the chosen feature vectors Experimental results show that the proposed algorithm provides a favorable performance.

  • PDF