• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.031 seconds

Efficiency Evaluation of the Feature Extraction of Roads from Map Image using Morphological Operators* (수리 형태학적 연산자를 이용한 지도 화상에서 도로 정보의 특징 추출에 대한 효율성 평가)

  • 남태희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.19-26
    • /
    • 1999
  • The geographic information system is needed in the image recognition field. This study recommends an efficient method to construct the GIS from the feature extraction of roads through scanning of a normal or hand-made maps. Many algorithms have been presented for such image information recognition. However, such algorithm processes have limitations due to their complexity. To efficiently extract road information from scanning map images. a $3{\times}3$ directional form is applied - structuring element, erosion and dilation, and opening and closing. This method allows for efficient evaluation of the featured road extracts from the map image and from the character sets.

  • PDF

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

The Impacts of Decomposition Levels in Wavelet Transform on Anomaly Detection from Hyperspectral Imagery

  • Yoo, Hee Young;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.623-632
    • /
    • 2012
  • In this paper, we analyzed the effect of wavelet decomposition levels in feature extraction for anomaly detection from hyperspectral imagery. After wavelet analysis, anomaly detection was experimentally performed using the RX detector algorithm to analyze the detecting capabilities. From the experiment for anomaly detection using CASI imagery, the characteristics of extracted features and the changes of their patterns showed that radiance curves were simplified as wavelet transform progresses and H bands did not show significant differences between target anomaly and background in the previous levels. The results of anomaly detection and their ROC curves showed the best performance when using the appropriate sub-band decided from the visual interpretation of wavelet analysis which was L band at the decomposition level where the overall shape of profile was preserved. The results of this study would be used as fundamental information or guidelines when applying wavelet transform to feature extraction and selection from hyperspectral imagery. However, further researches for various anomaly targets and the quantitative selection of optimal decomposition levels are needed for generalization.

Feature Extraction of Road Information by Optical Neural Field (시각신경계의 개념을 이용한 도로정보의 특징추출)

  • Son, Jin-U;Lee, Uk-Jae;Lee, Haeng-Se
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.452-460
    • /
    • 1994
  • Maps are one of the most complicated types of drawings. Drawing recognition technology is not yet sophisticated enough for automated map reading To automatically extract a road map directly from more complicated topographical maps, a very complicated algorithm is needed, since the image generally involves such complicated patterns as symbols, characters, residential sections, rivers, railroads, etc. This paper describes a new feature extraction method based on the human optical neural field. We apply this method to extract complete set of road segments from topographical maps. The proposed method successfully extract road segments from various areas.

  • PDF

Local Context based Feature Extraction for Efficient Face Detection (효율적인 얼굴 검출을 위한 지역적 켄텍스트 기반의 특징 추출)

  • Rhee, Phill-Kyu;Xu, Yong Zhe;Shin, Hak-Chul;Shen, Yan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.185-191
    • /
    • 2011
  • Recently, the surveillance system is highly being attention. Various Technologies as detecting object from image than determining and recognizing if the object are person are universally being used. Therefore, In this paper shows detecting on this kind of object and local context based facial feather detection algorithm is being advocated. Detect using Gabor Bunch in the same time Bayesian detection method for revision to find feather point is being described. The entire system to search for object area from image, context-based face detection, feature extraction methods applied to improve the performance of the system.

Implementation of Advanced Dynamic Signature Verification System (고성능 동적 서명인증시스템 구현)

  • Kim, Jin-Whan;Cho, Hyuk-Gyu;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.462-466
    • /
    • 2005
  • Dynamic (On-line) signature verification system consists of preprocessing, feature extraction, comparison and decision process for internal processing, and registration and verification windows for the user interface. We describe an implementation and design for an advanced dynamic signature verification system. Also, we suggest the method of feature extraction, matching algorithm, efficient user interface and an objective criteria for evaluating the performance.

  • PDF

Laver Farm Feature Extraction from Landsat ETM+ Satellite Image Using ICA-based Feature Extraction Algorithm (ICA기반 피처추출 알고리즘을 이용한 Landsat ETM+ 위성영상에서의 김양식장 피처추출)

  • Han Jong-Gyu;Yeon Yeon-Kwang;Chi Kwang-Hoon
    • Annual Conference of KIPS
    • /
    • 2004.11a
    • /
    • pp.793-796
    • /
    • 2004
  • 이 논문에서 제안한 ICA기반 피처추출 알고리즘은 다차원 영상에서 각 픽셀의 반사도 분광영역이 서로 다른 물체타입(목표피처와 배경피처)으로 이루어진 선형 혼합 분광영역으로 가정되는 픽셀에 대한 목표피처 탐지를 목적으로 한다. Landsat ETM+ 위성영상은 다차원 데이터구조로 이루어져 있으며, 영상에는 추출하고자하는 목표피처와 여러 종류의 배경피처들이 혼재한다. 이 논문에서는 목표피처(김양식장) 주변의 배경피처(갯뻘, 바닷물 등)들을 효과적으로 제거하기 위하여 목표피처의 픽셀 분광영역을 배경피처의 픽셀 분광영역으로 직교투영하게 된다. 픽셀내의 나머지 목표피처 분광영역의 양은 배경피처의 분광영역을 제거함으로써 추정하게 된다. 이 논문에서 제안한 ICA기반의 피처추출 방법의 우수성을 확인하기 위하여 Landsat ETM+ 위성영상에서 김양식장 피처를 추출하는데 적용하였다. 또한 피처추출 후 제거되지 않고 남아 있는 잡음(noise)정도와 피처추출 정확도 측면에서 전통적으로 가장 많이 사용되고 있는 최대우도 분류방법과 비교실험을 하였다. 결과적으로 이 논문에서 제안하는 방법이 목표피처 주변의 혼합분광영역에서 배경피처를 효과적으로 제거하여 추출하고자 하는 목표피처를 추출하는데 있어 우수한 탐지 성능을 보임을 알 수 있었다.

  • PDF

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.

An Integrated Accurate-Secure Heart Disease Prediction (IAS) Model using Cryptographic and Machine Learning Methods

  • Syed Anwar Hussainy F;Senthil Kumar Thillaigovindan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.504-519
    • /
    • 2023
  • Heart disease is becoming the top reason of death all around the world. Diagnosing cardiac illness is a difficult endeavor that necessitates both expertise and extensive knowledge. Machine learning (ML) is becoming gradually more important in the medical field. Most of the works have concentrated on the prediction of cardiac disease, however the precision of the results is minimal, and data integrity is uncertain. To solve these difficulties, this research creates an Integrated Accurate-Secure Heart Disease Prediction (IAS) Model based on Deep Convolutional Neural Networks. Heart-related medical data is collected and pre-processed. Secondly, feature extraction is processed with two factors, from signals and acquired data, which are further trained for classification. The Deep Convolutional Neural Networks (DCNN) is used to categorize received sensor data as normal or abnormal. Furthermore, the results are safeguarded by implementing an integrity validation mechanism based on the hash algorithm. The system's performance is evaluated by comparing the proposed to existing models. The results explain that the proposed model-based cardiac disease diagnosis model surpasses previous techniques. The proposed method demonstrates that it attains accuracy of 98.5 % for the maximum amount of records, which is higher than available classifiers.

Violent crowd flow detection from surveillance cameras using deep transfer learning-gated recurrent unit

  • Elly Matul Imah;Riskyana Dewi Intan Puspitasari
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.671-682
    • /
    • 2024
  • Violence can be committed anywhere, even in crowded places. It is hence necessary to monitor human activities for public safety. Surveillance cameras can monitor surrounding activities but require human assistance to continuously monitor every incident. Automatic violence detection is needed for early warning and fast response. However, such automation is still challenging because of low video resolution and blind spots. This paper uses ResNet50v2 and the gated recurrent unit (GRU) algorithm to detect violence in the Movies, Hockey, and Crowd video datasets. Spatial features were extracted from each frame sequence of the video using a pretrained model from ResNet50V2, which was then classified using the optimal trained model on the GRU architecture. The experimental results were then compared with wavelet feature extraction methods and classification models, such as the convolutional neural network and long short-term memory. The results show that the proposed combination of ResNet50V2 and GRU is robust and delivers the best performance in terms of accuracy, recall, precision, and F1-score. The use of ResNet50V2 for feature extraction can improve model performance.