• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.038 seconds

Recognition and Tracking of Moving Objects Using Label-merge Method Based on Fuzzy Clustering Algorithm (퍼지 클러스터링 알고리즘 기반의 라벨 병합을 이용한 이동물체 인식 및 추적)

  • Lee, Seong Min;Seong, Il;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.293-300
    • /
    • 2018
  • We propose a moving object extraction and tracking method for improvement of animal identification and tracking technology. First, we propose a method of merging separated moving objects into a moving object by using FCM (Fuzzy C-Means) clustering algorithm to solve the problem of moving object loss caused by moving object extraction process. In addition, we propose a method of extracting data from a moving object and a method of counting moving objects to determine the number of clusters in order to satisfy the conditions for performing FCM clustering algorithm. Then, we propose a method to continuously track merged moving objects. In the proposed method, color histograms are extracted from feature information of each moving object, and the histograms are continuously accumulated so as not to react sensitively to noise or changes, and the average is obtained and stored. Thereafter, when a plurality of moving objects are overlapped and separated, the stored color histogram is compared with each other to correctly recognize each moving object. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

Automatic Visual Feature Extraction And Measurement of Mushroom (Lentinus Edodes L.)

  • Heon-Hwang;Lee, C.H.;Lee, Y.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1230-1242
    • /
    • 1993
  • In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.

  • PDF

Aberration Extraction Algorithm for LCD Defect Detection (대면적 LCD 결함검출을 위한 수차량 추출 알고리즘)

  • Ko, Jung-Hwan;Lee, Jung-Suk;Won, Young-Jin
    • 전자공학회논문지 IE
    • /
    • v.48 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

Extraction of Texture Region-Based Average of Variations of Local Correlations Coefficients (국부상관계수의 영역 평균변화량에 의한 질감영역 추출)

  • 서상용;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.709-716
    • /
    • 2000
  • We present an efficient algorithm using region-based average of variations of local correlation coefficients (LCC) for the extraction of texture regions. The key idea of this algorithm for the classification of texture and shade regions is to utilize the fact that the averages of the variations of LCCs according to different orientations texture regions are clearly larger than those in shade regions. In order to evaluate the performance of the proposed algorithm, we use nine test images (Lena, Bsail, Camera Man, Face, Woman, Elaine, Jet, Tree, and Tank) of 8-bit 256$\times$256 pixels. Experimental results show that the proposed feature extracts well the regions which appear visually as texture regions.

  • PDF

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

RFA: Recursive Feature Addition Algorithm for Machine Learning-Based Malware Classification

  • Byeon, Ji-Yun;Kim, Dae-Ho;Kim, Hee-Chul;Choi, Sang-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.61-68
    • /
    • 2021
  • Recently, various technologies that use machine learning to classify malicious code have been studied. In order to enhance the effectiveness of machine learning, it is most important to extract properties to identify malicious codes and normal binaries. In this paper, we propose a feature extraction method for use in machine learning using recursive methods. The proposed method selects the final feature using recursive methods for individual features to maximize the performance of machine learning. In detail, we use the method of extracting the best performing features among individual feature at each stage, and then combining the extracted features. We extract features with the proposed method and apply them to machine learning algorithms such as Decision Tree, SVM, Random Forest, and KNN, to validate that machine learning performance improves as the steps continue.

Character Recognition Algorithm using Accumulation Mask

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.123-128
    • /
    • 2018
  • Learning data is composed of 100 characters with 10 different fonts, and test data is composed of 10 characters with a new font that is not used for the learning data. In order to consider the variety of learning data with several different fonts, 10 learning masks are constructed by accumulating pixel values of same characters with 10 different fonts. This process eliminates minute difference of characters with different fonts. After finding maximum values of learning masks, test data is expanded by multiplying these maximum values to the test data. The algorithm calculates sum of differences of two corresponding pixel values of the expanded test data and the learning masks. The learning mask with the smallest value among these 10 calculated sums is selected as the result of the recognition process for the test data. The proposed algorithm can recognize various types of fonts, and the learning data can be modified easily by adding a new font. Also, the recognition process is easy to understand, and the algorithm makes satisfactory results for character recognition.

Efficient CT Image Segmentation Algorithm Using both Spatial and Temporal Information

  • Lee, Sang-Bock;Lee, Jun-Haeng;Lee, Samyol
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.11a
    • /
    • pp.505-510
    • /
    • 2004
  • This paper suggests a new CT-image segmentation algorithm. This algorithm uses morphological filters and the watershed algorithms. The proposed CT-image segmentation algorithm consists of six parts: preprocessing, image simplification, feature extraction, decision making, region merging, and postprocessing. By combining spatial and temporal information, we can get more accurate segmentation results. The simulation results illustrate not only the segmentation results of the conventional scheme but also the results of the proposed scheme; this comparison illustrates the efficacy of the proposed technique. Furthermore, we compare the various medical images of the structuring elements. Indeed, to illustrate the improvement of coding efficiency in postprocessing, we use differential chain coding for the shape coding of results.

  • PDF

A Study on the Feature Extraction and Matching Algorithm for a Face Recognition (얼굴인식을 위한 특징 추출 및 정합 알고리즘에 관한 연구)

  • 김윤수;류정식;김준식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.15-22
    • /
    • 2002
  • In this paper, we proposed the face recognition algorithm which can be used for a security system. The distance and angle of the face features are used in the conventional method, but the proposed method used the genetic algorithm which selects image to best fit the input image in the database images. The performance of proposed algorithm is verified through the simulation. The results of proposed method show good performance.

  • PDF