Abstract
Learning data is composed of 100 characters with 10 different fonts, and test data is composed of 10 characters with a new font that is not used for the learning data. In order to consider the variety of learning data with several different fonts, 10 learning masks are constructed by accumulating pixel values of same characters with 10 different fonts. This process eliminates minute difference of characters with different fonts. After finding maximum values of learning masks, test data is expanded by multiplying these maximum values to the test data. The algorithm calculates sum of differences of two corresponding pixel values of the expanded test data and the learning masks. The learning mask with the smallest value among these 10 calculated sums is selected as the result of the recognition process for the test data. The proposed algorithm can recognize various types of fonts, and the learning data can be modified easily by adding a new font. Also, the recognition process is easy to understand, and the algorithm makes satisfactory results for character recognition.