• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.033 seconds

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.

Panoramic Image Composition Algorithm through Scaling and Rotation Invariant Features (크기 및 회전 불변 특징점을 이용한 파노라마 영상 합성 알고리즘)

  • Kwon, Ki-Won;Lee, Hae-Yeoun;Oh, Duk-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.333-344
    • /
    • 2010
  • This paper addresses the way to compose paronamic images from images taken the same objects. With the spread of digital camera, the panoramic image has been studied to generate with its interest. In this paper, we propose a panoramic image generation method using scaling and rotation invariant features. First, feature points are extracted from input images and matched with a RANSAC algorithm. Then, after the perspective model is estimated, the input image is registered with this model. Since the SURF feature extraction algorithm is adapted, the proposed method is robust against geometric distortions such as scaling and rotation. Also, the improvement of computational cost is achieved. In the experiment, the SURF feature in the proposed method is compared with features from Harris corner detector or the SIFT algorithm. The proposed method is tested by generating panoramic images using $640{\times}480$ images. Results show that it takes 0.4 second in average for computation and is more efficient than other schemes.

종합병원관리 전산화 System-MEDIOS

  • 이승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.55-58
    • /
    • 1982
  • In this paper, a method for camera position estimation in gaster using elechoendoscopic image sequence is proposed. In order to obtain proper image sequences, the gaster in divided into three sections. It is presented that camera position modeling for 3D information extraction and image distortion due to the endoscopic lenses is corrected.The feature points are represented with respect to the reference coordinate system belpw 10 percents error rate. The faster distortion correction algorithm is proposed in this paper. This algorithm uses error table which is faster than coordinate transform method using n-th order polynomials.

  • PDF

Facial Region Extraction in an Infrared Image (적외선 영상에서의 얼굴 영역 자동 추적)

  • Shin, S.W.;Kim, K.S.;Yoon, T.H.;Han, M.H.;Kim, I.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.57-59
    • /
    • 2005
  • In our study, the automatic tracking algorithm of a human face is proposed by utilizing the thermal properties and 2nd momented geometrical feature of an infrared image. First, the facial candidates are estimated by restricting the certain range of thermal values, and the spurious blobs cleaning algorithm is applied to track the refined facial region in an infrared image.

  • PDF

Enhanced Urban Information Recognition through Correction of Shadow Effects (그림자효과 보정을 통한 향상된 도시정보 인식)

  • 손홍규;윤공현;박효근
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.187-190
    • /
    • 2003
  • Due to complexity of diverse features in urban area, accurate feature extraction is laborious task in aerial and satellite imagery. Especially occlusion by buildings, and image distortion of shadow effects make processing more difficult work. In this study, algorithm was presented to correct of shadow effects in aerial color images. This algorithm enables user to accurately interpretate urban information by correction of shadow effects in aerial color images

  • PDF

Representation and Recognition of Shape by Curve (곡선에 의한 형상의 표현과 인식)

  • Koh, Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.4
    • /
    • pp.551-558
    • /
    • 1994
  • This paper proposes the algorithm of the feature extraction, making polyline- shape according to extracted points and similarity test on the object represented by contour. The control points which can make approximate curve are extracted as features of the object. Experiments show that this algorithm is a effective method for identification between different shapes.

  • PDF

A Novel Face Recognition Algorithm based on the Deep Convolution Neural Network and Key Points Detection Jointed Local Binary Pattern Methodology

  • Huang, Wen-zhun;Zhang, Shan-wen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.363-372
    • /
    • 2017
  • This paper presents a novel face recognition algorithm based on the deep convolution neural network and key point detection jointed local binary pattern methodology to enhance the accuracy of face recognition. We firstly propose the modified face key feature point location detection method to enhance the traditional localization algorithm to better pre-process the original face images. We put forward the grey information and the color information with combination of a composite model of local information. Then, we optimize the multi-layer network structure deep learning algorithm using the Fisher criterion as reference to adjust the network structure more accurately. Furthermore, we modify the local binary pattern texture description operator and combine it with the neural network to overcome drawbacks that deep neural network could not learn to face image and the local characteristics. Simulation results demonstrate that the proposed algorithm obtains stronger robustness and feasibility compared with the other state-of-the-art algorithms. The proposed algorithm also provides the novel paradigm for the application of deep learning in the field of face recognition which sets the milestone for further research.

An Improved 2-D Moment Algorithm for Pattern Classification

  • Yoon, myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 1999
  • We propose a new algorithm for pattern classification by extracting feature vectors based on Gibbs distributions which are well suited for representing the characteristic of an images. The extracted feature vectors are comprised of 2-D moments which are invariant under translation rotation, and scale of the image less sensitive to noise. This implementation contains two puts: feature extraction and pattern classification First of all, we extract feature vector which consists of an improved 2-D moments on the basis of estimated Gibbs distribution Next, in the classification phase the minimization of the discrimination cost function for a specific pattern determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on SUN ULTRA 10 Workstation Experiment results reveal that the proposed scheme had high classification rate over 98%.

  • PDF

Harmonics-based Spectral Subtraction and Feature Vector Normalization for Robust Speech Recognition

  • Beh, Joung-Hoon;Lee, Heung-Kyu;Kwon, Oh-Il;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.7-20
    • /
    • 2004
  • In this paper, we propose a two-step noise compensation algorithm in feature extraction for achieving robust speech recognition. The proposed method frees us from requiring a priori information on noisy environments and is simple to implement. First, in frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it reduces the additive background noise and makes the shape of harmonics in speech spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector Normalization (FVN) to compensate for both the channel distortion and additive noise. The weighted variance FVN compensates for the variance mismatch in both the speech and the non-speech regions respectively. Representative performance evaluation using Aurora 2 database shows that the proposed method yields 27.18% relative improvement in accuracy under a multi-noise training task and 57.94% relative improvement under a clean training task.

  • PDF