• Title/Summary/Keyword: Feature extraction algorithm

Search Result 877, Processing Time 0.029 seconds

Efficient Image Stitching Using Fast Feature Descriptor Extraction and Matching (빠른 특징점 기술자 추출 및 정합을 이용한 효율적인 이미지 스티칭 기법)

  • Rhee, Sang-Burm
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Recently, the field of computer vision has been actively researched through digital image which can be easily generated as the development and expansion of digital camera technology. Especially, research that extracts and utilizes the feature in image has been actively carried out. The image stitching is a method that creates the high resolution image using features extract and match. Image stitching can be widely used in military and medical purposes as well as in variety fields of real life. In this paper, we have proposed efficient image stitching method using fast feature descriptor extraction and matching based on SURF algorithm. It can be accurately, and quickly found matching point by reduction of dimension of feature descriptor. The feature descriptor is generated by classifying of unnecessary minutiae in extracted features. To reduce the computational time and efficient match feature, we have reduced dimension of the descriptor and expanded orientation window. In our results, the processing time of feature matching and image stitching are faster than previous algorithms, and also that method can make natural-looking stitched image.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Fault Location and Classification of Combined Transmission System: Economical and Accurate Statistic Programming Framework

  • Tavalaei, Jalal;Habibuddin, Mohd Hafiz;Khairuddin, Azhar;Mohd Zin, Abdullah Asuhaimi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2106-2117
    • /
    • 2017
  • An effective statistical feature extraction approach of data sampling of fault in the combined transmission system is presented in this paper. The proposed algorithm leads to high accuracy at minimum cost to predict fault location and fault type classification. This algorithm requires impedance measurement data from one end of the transmission line. Modal decomposition is used to extract positive sequence impedance. Then, the fault signal is decomposed by using discrete wavelet transform. Statistical sampling is used to extract appropriate fault features as benchmark of decomposed signal to train classifier. Support Vector Machine (SVM) is used to illustrate the performance of statistical sampling performance. The overall time of sampling is not exceeding 1 1/4 cycles, taking into account the interval time. The proposed method takes two steps of sampling. The first step takes 3/4 cycle of during-fault and the second step takes 1/4 cycle of post fault impedance. The interval time between the two steps is assumed to be 1/4 cycle. Extensive studies using MATLAB software show accurate fault location estimation and fault type classification of the proposed method. The classifier result is presented and compared with well-established travelling wave methods and the performance of the algorithms are analyzed and discussed.

Principle and Algorithm of Cloth Covering and Application to Script Identification (천 커버링의 원리와 알고리즘 그리고 언어 식별에 응용)

  • Kim, Min-Woo;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes a concept and algorithm of cloth covering. It is a physically-based model which simulates computationally a shape of cloth covering some objects. The goal of cloth covering is to conceal the details of object and to reveal only the shape outline. It has one scale parameter which controls the degree of suppressing fine-scale structures. To show viability of the proposed cloth covering, this paper performed an experiment of script recognition. The results of comparing accuracies of feature extraction using Gaussian and cloth covering showed that the cloth covering is superior to Gaussian. We discuss the reason for the superiority.

Target Object Detection Based on Robust Feature Extraction (강인한 특징 추출에 기반한 대상물체 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7302-7308
    • /
    • 2014
  • Detecting target objects robustly in natural environments is a difficult problem in the computer vision and image processing areas. This paper suggests a method of robustly detecting target objects in the environments where reflection exists. The suggested algorithm first captures scenes with a stereo camera and extracts the line and corner features representing the target objects. This method then eliminates the reflected features among the extracted ones using a homographic transform. Subsequently, the method robustly detects the target objects by clustering only real features. The experimental results showed that the suggested algorithm effectively detects the target objects in reflection environments rather than existing algorithms.

Spatial-temporal texture features for 3D human activity recognition using laser-based RGB-D videos

  • Ming, Yue;Wang, Guangchao;Hong, Xiaopeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1595-1613
    • /
    • 2017
  • The IR camera and laser-based IR projector provide an effective solution for real-time collection of moving targets in RGB-D videos. Different from the traditional RGB videos, the captured depth videos are not affected by the illumination variation. In this paper, we propose a novel feature extraction framework to describe human activities based on the above optical video capturing method, namely spatial-temporal texture features for 3D human activity recognition. Spatial-temporal texture feature with depth information is insensitive to illumination and occlusions, and efficient for fine-motion description. The framework of our proposed algorithm begins with video acquisition based on laser projection, video preprocessing with visual background extraction and obtains spatial-temporal key images. Then, the texture features encoded from key images are used to generate discriminative features for human activity information. The experimental results based on the different databases and practical scenarios demonstrate the effectiveness of our proposed algorithm for the large-scale data sets.

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

Development of a Characteristic Point Detection Algorithm for the Calculation of Pulse Wave Velocity (맥파전달속도 계산을 위한 특징점 검출 알고리즘 개발)

  • Lee, Lark-Beom;Im, Jae-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.902-907
    • /
    • 2008
  • Shape of the pulse waveform is affected by the visco-elasticity characteristics of the arterial wall and the reflection waves generated at the bifurcations of arterial branches. This study was designed to improve the accuracy for the extraction of pulse wave features, then proved the superiority of the developed algorithm by clinical evaluation. Upstroke point of the pulse wave was used as an extraction feature since it is minimally affected by the waveform variation. R-peak of the ECG was used as a reference to decide the minimum level, then intersection of the least squares of regression line was used as an upstroke point. Developed algorithm was compared with the existing minimum value detection algorithm and tangent-intersection algorithm using data obtained from 102 subjects. Developed algorithm showed the least standard deviation of $0.29{\sim}0.44\;m/s$ compared with that of the existing algorithms, $0.91{\sim}3.66\;m/s$. Moreover, the rate of standard deviation of more than 1.00m/s for the PWV values reduced with the range of $29.0{\sim}42.4%$, which proved the superiority of the newly developed algorithm.

Automatic Extraction of the Facial Feature Points Using Moving Color (색상 움직임을 이용한 얼굴 특징점 자동 추출)

  • Kim, Nam-Ho;Kim, Hyoung-Gon;Ko, Sung-Jea
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.55-67
    • /
    • 1998
  • This paper presents an automatic facial feature point extraction algorithm in sequential color images. To extract facial region in the video sequence, a moving color detection technique is proposed that emphasize moving skin color region by applying motion detection algorithm on the skin-color transformed images. The threshold value for the pixel difference detection is also decided according to the transformed pixel value that represents the probability of the desired color information. Eye candidate regions are selected using both of the black/white color information inside the skin-color region and the valley information of the moving skin region detected using morphological operators. Eye region is finally decided by the geometrical relationship of the eyes and color histogram. To decide the exact feature points, the PCA(Principal Component Analysis) is used on each eye and mouth regions. Experimental results show that the feature points of eye and mouth can be obtained correctly irrespective of background, direction and size of face.

  • PDF

Rotation Invariant 3D Star Skeleton Feature Extraction (회전무관 3D Star Skeleton 특징 추출)

  • Chun, Sung-Kuk;Hong, Kwang-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.836-850
    • /
    • 2009
  • Human posture recognition has attracted tremendous attention in ubiquitous environment, performing arts and robot control so that, recently, many researchers in pattern recognition and computer vision are working to make efficient posture recognition system. However the most of existing studies is very sensitive to human variations such as the rotation or the translation of body. This is why the feature, which is extracted from the feature extraction part as the first step of general posture recognition system, is influenced by these variations. To alleviate these human variations and improve the posture recognition result, this paper presents 3D Star Skeleton and Principle Component Analysis (PCA) based feature extraction methods in the multi-view environment. The proposed system use the 8 projection maps, a kind of depth map, as an input data. And the projection maps are extracted from the visual hull generation process. Though these data, the system constructs 3D Star Skeleton and extracts the rotation invariant feature using PCA. In experimental result, we extract the feature from the 3D Star Skeleton and recognize the human posture using the feature. Finally we prove that the proposed method is robust to human variations.