Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권12호
/
pp.3383-3397
/
2023
Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.
최근 인터넷의 급속한 성장과 더불어 전자메일(E-Mail)은 통신 및 정보, 의사교환의 필수적인 매체로 사용되어지고 있다. 그러나 편리하고 비용이 들지 않는 장점을 이용해 엄청난 양의 스팸 메일이 매일같이 쏟아져 오고, 그 문제의 심각성에 정보통신부는 ‘정보통신망 이용촉진 및 정보보호등에 관한 개정안’이라는 새로운 법률까지 만들었다. 본 논문에서는 기존의 문서 분류에 널리 쓰이던 나이브 베이지안 분류자(naive Bayesian classifier)보다 개선된 가중치가 부여된 베이지안 분류자 (weighted Bayesian classifier)와 정보통신부의 개정안을 준수하는 매일을 분류하기 위한 전처리 단계, 그리고 사용자의 행동을 학습하여 보다 정확한 분류를 가능하게 지능형 에이젼트(intelligent agent)가 결합된 형태의 스팸 메일 필터링 시스템(spam mail filtering system)을 제안한다. 제안된 시스템에서는 사용자가 직접 규칙을 넣을 필요 없이 학습한 데이타를 가지고 자동적으로 스팸 메일을 분류할 수가 있는데, 특히 이메일의 특징 추출(feature extraction)을 이용하여 상대적으로 스팸/논스팸 판별에 비중이 큰 단어들에 대해 가중치를 부여함으로서 필터링의 성능향상을 도모하였다. 실험에서는 제안된 시스템의 최적의 성능 평가를 위해서 일반 나이브 베이지안 필터링시의 성능과 이메일 헤더정보, 특정 Tag들 그리고 하이퍼링크 부분에 가중치를 준 베이지안 필터링, 마지막으로 4가지를 결합한 상태의 필터링 성능을 각각 비교 분석하였다. 그 결과 제안하는 시스템이 나이브 베이지안 분류자를 이용한 시스템보다 정확도에서는 5.7% 저조한 성능을 보였으나, 재현율에서 33.3%, F-measure에서 31.2% 우수한 성능향상을 보였다.
The purpose of this paper is to propose the HMM (hidden markov model) based on multi-observation sequence for the isolated word recognition. The proosed model generates the codebook of MSVQ by dividing each word into several sections followed by dividing training data into several sections. Then, we are to obtain the sequential value of multi-observation per each section by weighting the vectors of distance form lower values to higher ones. Thereafter, this the sequential with high probability value while in recognition. 146 DDD area names are selected as the vocabularies for the target recognition, and 10LPC cepstrum coefficients are used as the feature parameters. Besides the speech recognition experiments by way of the proposed model, for the comparison with it, the experiments by DP, MSVQ, and genral HMM are made with the same data under the same condition. The experiment results have shown that HMM based on multi-observation sequence proposed in this paper is proved superior to any other methods such as the ones using DP, MSVQ and general HMM models in recognition rate and time.
평균법과 클러스터링은 다속성 평가문제에서 널리 쓰이고 있는 중요한 데이터 마이닝 기법들이다. 그러나, 다양한 다속성 평가 문제에서 데이터 마이닝을 할 때, 데이터들의 특징은 그 중요성이 달라질 수 있기 때문에 이러한 데이터의 중요도 차이를 고려해야 할 필요가 있다. 따라서, 이러한 기법들은 데이터의 선택 및 중요도 등과 같이 그 특징을 얼마나 잘 반영하는 지가 중요하다. 게다가, 산술평균법의 경우에는 우선순위 및 가중치로 정의되는 평가구조에서 적합한 결과를 산출하기에는 한계가 있을뿐 만 아니라, 평가자 그룹별 특징을 반영하기 곤란하다. 따라서, 본 연구에서는 기하학적 도형을 바탕으로 유사도를 평가하여, 평가자 그룹별로 특징지어지는 이산적인 환경에서의 평균을 산출하는 알고리즘을 제안하였다. 본 알고리즘의 핵심사항 중 하나는, 항목별 우선순위의 혼돈없이 유사도를 평가할 수 있다는 점이다.
본 논문은 초해상도 결과의 품질을 향상시키기 위해 질감 특징을 세분화하여 각각을 대조하고, 그 결과를 가중치로 이용하는 초해상도 방법을 제안하였다. 초해상도에서 중요한 평가 기준인 품질의 향상을 위해서는 경계 영역과 같은 세부사항에서의 정확하고 명확한 복원 결과가 필요하며, 인공물과 같은 불필요한 잡음을 최소화하는 것이 중요하다. 제안하는 방법은 품질 향상을 위해 기존 CNN(Convolutional Neural Network) 기반의 초해상도 방법에서 특징 추정을 위해 다중 경로의 잔차 블록 구조와 skip-connection을 구성하였다. 추가적인 질감 분석을 위한 선명 및 흐림 이미지 결과를 추가로 학습하였다. 이를 활용하여 초해상도 수행 결과 또한 각각을 대조하여 가중치를 할당하는 방법을 이용해 영상의 세부사항 영역과 평활화 영역에 대해 개선된 품질을 얻을 수 있도록 하였다. 제안하는 방법의 실험 결과 평가 기준으로 활용되는 PSNR과 SSIM 값이 기존 알고리즘 대비 높은 결과 값을 얻어 품질이 개선됨을 확인할 수 있었다.
본 논문에서는 컬러 정보와 형태 정보를 이용한 상표 영상 검색 시스템을 제안하였다. 컬러 정보는 영역을 분할하여 영역별 컬러 분포 히스토그램 특성에 근거한 컬러 정보를 이용하였고, 형태 정보는 경계면 추출, 무게 중심 추출, angular 샘플링 등의 전처리 과정과 무게 중심으로부터 경계면까지 거리의 합, 표준 편차, 장/단축 비율을 계산을 이용하였다. 특히, 무게중심을 이용한 angular 샘플링을 이용하여 특징을 추출하고 처리 시간을 줄일 수 있었다. 사용자는 컬러와 형태 정보에 의한 검색을 수행하고, 또한 가중치를 부여함으로써 두 방법을 혼합하여 사용할 수 있다.
본 논문에서는 다양한 잡음환경에서 효과적인 잡음 제거 (NS, noise suppression)를 위한 새로운 음성향상 (speech enhancement) 알고리즘을 제안한다. 제안된 방법에서는 음성향상 알고리즘에서 잡음전력 갱신을 위한 음성검출 (VAD, voice activity detection)의 피쳐 (feature) 파라미터로서 오염된 음성신호를 기반으로 주파수 밴드 별로 도출되는 기존의 지역 음성부재확률 (LSAP, local speech absecne probability) 대신 오염된 음성신호의 Teager energy (TE)를 적용한 LSAP를 적용한다. 또한 적용된 TE operator의 성능을 개선하기 위하여 프레임 단위로 도출되는 전역 음성부재확률 (GSAP, global SAP)을 TE의 가중치 파라미터로서 적용한다. 제안된 알고리즘은 기존의 방법과 객관적인 실험을 통해 비교 평가한 결과 다양한 배경잡음 환경에서 향상된 성능을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권1호
/
pp.16-37
/
2022
Accurate liver segment segmentation based on radiological images is indispensable for the preoperative analysis of liver tumor resection surgery. However, most of the existing segmentation methods are not feasible to be used directly for this task due to the challenge of exact edge prediction with some tiny and slender vessels as its clinical segmentation criterion. To address this problem, we propose a novel deep learning based segmentation model, called Boundary-Aware Dual Attention Liver Segment Segmentation Model (BADA). This model can improve the segmentation accuracy of liver segments with enhancing the edges including the vessels serving as segment boundaries. In our model, the dual gated attention is proposed, which composes of a spatial attention module and a semantic attention module. The spatial attention module enhances the weights of key edge regions by concerning about the salient intensity changes, while the semantic attention amplifies the contribution of filters that can extract more discriminative feature information by weighting the significant convolution channels. Simultaneously, we build a dataset of liver segments including 59 clinic cases with dynamically contrast enhanced MRI(Magnetic Resonance Imaging) of portal vein stage, which annotated by several professional radiologists. Comparing with several state-of-the-art methods and baseline segmentation methods, we achieve the best results on this clinic liver segment segmentation dataset, where Mean Dice, Mean Sensitivity and Mean Positive Predicted Value reach 89.01%, 87.71% and 90.67%, respectively.
본 논문에서는 깨끗한 환경에서 녹음된 음성데이터와 채널환경에서 수집된 음성데이터의 화자확인 성능을 비교하였다. 채널데이터의 화자확인 성능을 향상시키기 위하여 채널환경에 강인한 특징 파라메타 및 전처리에 대해 연구하였다. 실험을 위한 음성 DB는 어구지시(text-prompted) 시스템을 고려하여 두 자리의 한국어 숫자음으로 구성하였다. 적용한 음성 특징은 LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair)이며, 채널 잡음을 제거하기 위한 전처리 과정으로는 음성신호에 대한 필터링을 적용하였다. 추출된 특징으로부터 채널의 영향을 제거 또는 보상하기 위해 cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl)를 적용하였다. 또한 각각의 특징 및 처리 방법에 대한 음성인식 성능을 제시함으로써 화자확인에서의 성능과 음성인식에서의 성능을 비교하였다. 적용한 음성 특징 및 처리 방법들에 대한 성능 평가를 위해 HTK(HMM Tool Kit) 2.0을 이용하였다. 남자, 여자 화자별로 임계값을 다르게 주는 방법으로 깨끗한 음성데이터와 채널 데이터에 대한 EER(Equal Error Rate)을 구하여 비교하였다. 실험결과 전처리 과정에서 대역통과 필터(150~3800Hz)를 적용하여 저대역 및 고대역의 채널 잡음을 제거하고, 이 신호로부터 MFCC를 추출하였을 때 EER 측면에서의 화자확인 성능이 가장 좋게 나타났다.
본 연구에서는 용담댐 상류, 천천 시험유역을 대상으로 분포형 수문모형을 이용하여 강우의 공간분포 특성에 의한 유역에서의 침식 및 퇴적양상을 분석하고, 유출 및 유사량 모의결과에 미치는 영향을 분석하였다. 일반적으로 강우의 공간적 분포를 묘사하기 위해 사용되는 지점 강우 내삽기법(Thiessen Polygon: TP, Inverse Distance Weighting: IDW, Kriging) 및 레이더 강우 합성기법(Gauge-Radar ratio: GR, Conditional Merging: CM)을 이용하여 태풍으로 인한 3개의 집중호우 사상기간동안의 강우장을 생성한 후 각 기법들에 의해 생성된 강우장의 양적, 공간적 특성을 평가하였다. 또한, 각 기법별로 생성된 공간분포형 강우를 분포형 수문모형에 적용하여 강우의 공간분포에 따른 유역에서의 강우-유사-유출분석 및 유역에서의 침식 및 퇴적양상을 비교 분석하였다. 그 결과, 지상 우량계를 이용한 내삽기법의 경우 유사한 우량주상도 및 수문응답을 나타내었으며, 원시 레이더 자료 및 GR기법에 의한 결과는 각각 과소, 과대산정된 반면 CM기법은 레이더 강우의 공간적 특성을 유지하면서 양적으로도 개선된 결과를 보여주었다. 또한 양적으로 유사한 강우장임에도 불구하고, 각 기법에 의한 강우장의 공간적 특성으로 인하여 대상유역내 침식 및 퇴적양상은 매우 상이하게 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.