본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.
3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.
This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.
시각기반 증강현실을 구현하기 위한 추적 방법들은 정형 패턴 마커를 가정하는 마커 추적기법과 영상 특징점을 추출하여 이를 추적하는 자연특징 추적기법으로 분류된다. 마커 추적기법은 빠른 마커의 추출 및 인식이 가능하여 모바일 기기에서도 실시간 처리가 가능하다. 한편 자연 특징 추적기법의 경우는 입력 영상의 다양성을 고려해야 하므로 계산량이 많은 처리과정을 거쳐야 한다. 따라서 저사양의 모바일 기기에서는 빠른 실시간 처리에 어려움이 있다. 기존의 자연특징 추적에서는 입력되는 카메라 영상의 매 프레임마다 특징점을 추출하고 패턴매칭 과정을 거친다. 다수의 자연특징점들을 추출하는 과정과 패턴매칭 과정은 계산량이 많아 실시간 응용에 많은 제약을 가하는 요인으로 작용한다. 특히 등록된 패턴의 개수가 증가될수록 패턴매칭 과정의 처리시간도 증가하게 된다. 본 논문에서는 이러한 단점을 해결하고자 자연특징 추적 과정에 광류를 사용하여 모바일 기기에서의 실시간 동작이 가능하도록 하였다. 패턴매칭에 사용된 특징점들은 다음의 연속 프레임에서 광류추적 기법을 적용하여 대응점들을 빠르게 찾도록 하였다. 또한 추적 과정에서 소실되는 특징점의 수에 비례하여 새로운 특징점들을 추가하여 특징점의 전체 개수는 일정 수준으로 유지되도록 하였다. 실험 결과 제안하는 추적 방법은 자연특징점 추적 시간을 상당히 단축시킬 뿐만 아니라 카메라 자세 추정 결과도 더욱 안정시킴을 보여주었다.
Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.
Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2004년도 ICCAS
/
pp.1458-1463
/
2004
Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.
일반거인 피쳐검출 및 추적 알고리즘에는 Garbor-jet를 이용한 elastic bunch graph matching (EBGM), rotation normalized cross-correlation (NCC-R) 및 화소의 고유치를 이용한 Shi-Tomasi-Kanade(STK) 알고리즘 등이 있다. 이들 중에서 EBGM, NCC-R은 피쳐모델에 의해 피쳐를 검출하지만 STK 알고리즘은 피쳐를 자동적으로 검출하는 특징을 가진다. 본 논문에서는 STK알고리즘인 Newton-Raphson (NR) 추적의 초기화 문제를 해결하기 위해서 모델링된 피쳐영역에서 STK 알고리즘으로 피쳐를 검출한 후, NR 방법으로 피쳐를 추적할 때, NR 방법에 의한 피쳐추적의 정확성을 개선시키기 위해 block matching agorithm (BMA)-NR 방법을 제안하였다. NR 방법에 의한 피쳐변위수렴시 BMA-NR 방법이 NBMA-NR (no BMA-NR)방법보다 피쳐추적의 정확성이 향상되었는데, 이는 NR의 서치영역크기로 인한 국소 최소치(local minimum) 문제를 해결하였기 때문이다.
비디오 영상 프레임들에서 2D 특징점들을 지속적으로 추적하는 문제는 프레임 간의 빈번한 특징점 매칭 실패로 인하여 어려움을 겪어왔다. 본 논문에서는 긴 비디오 프레임들에서 강건하게 2D 특징점들을 추적하는 기법을 제안한다. 이전 프레임까지 추적되어온 각 특징점에 대해 움직임 상태변수를 정의하고 이들 상태변수로부터 현재 프레임에서의 움직임을 예측한다. 예측된 움직임은 추적을 위한 탐색 윈도우를 설정을 위한 초기 위치로 지정된다. 유사성 검사를 통해서 탐색 윈도우 내에서 대응점을 결정한다. 측정 데이터를 반영하여 현재 프레임에서의 특징점의 움직임 상태 변수를 수정하는 과정을 갖는다. 특징점의 추적 결과는 오차를 포함하고 있고 잘못된 추적이 발생될 수 있다. 잘못 추적된 이상값들은 RANSAC 알고리즘을 적용하여 제거함으로써 정확한 특징점 추적이 지속될 수 있도록 한다. 실제 비디오 프레임들에 대해 특징점 추적을 실시한 결과 긴 비디오 프레임들에 대해서도 특징점 추적이 안정적으로 수행됨을 확인할 수 있었다.
비디오 감시 시스템에서 물체의 추적은 매우 중요하다. 본 논문에서는 외부 환경에서 움직이는 물체를 추적하는 방법을 제안한다. 움직이는 물체를 추적하기 위하여 먼저 가중치 차 영상을 구하여 움직이는 물체를 추출한 후 다시 닫힘 연산을 사용하여 잡음을 제거한다. 그리고 추출된 다양한 특징 정보로 매칭하여 움직이는 물체를 추적한다. 제안된 추적 방법은 가중치 차 영상을 사용하여 움직이는 물체를 추적하기에 정지된 물체가 갑자기 움직이거나 갑자기 멈출 때도 정확히 추적할 수 있다. 본 논문에서 제안한 추적 시스템은 공간위치, 형상과 명암도 특징을 종합하기에 움직이는 물체를 보다 더 효과적으로 추적할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권3호
/
pp.1464-1480
/
2019
Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.