• Title/Summary/Keyword: Feature Tracking Method

Search Result 277, Processing Time 0.028 seconds

Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity (스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘)

  • Park, Yong-Hee;Kwon, Oh-Seok
    • Journal of Internet Computing and Services
    • /
    • v.6 no.5
    • /
    • pp.85-95
    • /
    • 2005
  • This study proposes a method of feature point extraction using scale-space filtering and a feature point tracking algorithm based on a texturedness similarity comparison, With well-defined operators one can select a scale parameter for feature point extraction; this affects the selection and localization of the feature points and also the performance of the tracking algorithm. This study suggests a feature extraction method using scale-space filtering, With a change in the camera's point of view or movement of an object in sequential images, the window of a feature point will have an affine transform. Traditionally, it is difficult to measure the similarity between correspondence points, and tracking errors often occur. This study also suggests a tracking algorithm that expands Shi-Tomasi-Kanade's tracking algorithm with texturedness similarity.

  • PDF

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Reinforced Feature of Dynamic Search Area for the Discriminative Model Prediction Tracker based on Multi-domain Dataset (다중 도메인 데이터 기반 구별적 모델 예측 트레커를 위한 동적 탐색 영역 특징 강화 기법)

  • Lee, Jun Ha;Won, Hong-In;Kim, Byeong Hak
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.323-330
    • /
    • 2021
  • Visual object tracking is a challenging area of study in the field of computer vision due to many difficult problems, including a fast variation of target shape, occlusion, and arbitrary ground truth object designation. In this paper, we focus on the reinforced feature of the dynamic search area to get better performance than conventional discriminative model prediction trackers on the condition when the accuracy deteriorates since low feature discrimination. We propose a reinforced input feature method shown like the spotlight effect on the dynamic search area of the target tracking. This method can be used to improve performances for deep learning based discriminative model prediction tracker, also various types of trackers which are used to infer the center of the target based on the visual object tracking. The proposed method shows the improved tracking performance than the baseline trackers, achieving a relative gain of 38% quantitative improvement from 0.433 to 0.601 F-score at the visual object tracking evaluation.

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

STK Feature Tracking Using BMA for Fast Feature Displacement Convergence (빠른 피쳐변위수렴을 위한 BMA을 이용한 STK 피쳐 추적)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.81-87
    • /
    • 1999
  • In general, feature detection and tracking algorithms is classified by EBGM using Garbor-jet, NNC-R and STK algorithm using pixel eigenvalue. In those algorithms, EBGM and NCC-R detect features with feature model, but STK algorithm has a characteristics of an automatic feature selection. In this paper, to solve the initial problem of NR tracking in STK algorithm, we detected features using STK algorithm in modelled feature region and tracked features with NR method. In tracking, to improve the tracking accuracy for features by NR method, we proposed BMA-NR method. We evaluated that BMA-NR method was superior to NBMA-NR in that feature tracking accuracy, since BMA-NR method was able to solve the local minimum problem due to search window size of NR.

  • PDF

Robust 2D Feature Tracking in Long Video Sequences (긴 비디오 프레임들에서의 강건한 2차원 특징점 추적)

  • Yoon, Jong-Hyun;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.473-480
    • /
    • 2007
  • Feature tracking in video frame sequences has suffered from the instability and the frequent failure of feature matching between two successive frames. In this paper, we propose a robust 2D feature tracking method that is stable to long video sequences. To improve the stability of feature tracking, we predict the spatial movement in the current image frame using the state variables. The predicted current movement is used for the initialization of the search window. By computing the feature similarities in the search window, we refine the current feature positions. Then, the current feature states are updated. This tracking process is repeated for each input frame. To reduce false matches, the outlier rejection stage is also introduced. Experimental results from real video sequences showed that the proposed method performs stable feature tracking for long frame sequences.

A Study on the Moving Object Tracking System Using Multi-feature Matching (다양한 특징 매칭을 이용한 움직이는 물체 추적 시스템에 관한 연구)

  • Piao, Zai-Jun;Kim, Sun-Woo;Choi, Yeon-Sung;Park, Chun-Bae;Ha, Tae-Ryeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.786-792
    • /
    • 2007
  • Moving object tracking is very important in video surveillance system. This paper presents a method for tracking moving objects in an outdoor environment. To moving object tracking, first, after extract object that move yielding weight subtraction image and then use close operator to reduce the noise. And we track a object that move detected by matching the extracted multi-feature information. The proposed tracking technique can track moving object by multi-feature matching method so that exactly tracking the objects which are suddenly move or stop. The proposed tracking technique can be efficiently tracking the moving objects, because of combined with spatial position, shape and intensity informations.

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.