• Title/Summary/Keyword: Feature Set Selection

Search Result 186, Processing Time 0.027 seconds

Combined Feature Set and Hybrid Feature Selection Method for Effective Document Classification (효율적인 문서 분류를 위한 혼합 특징 집합과 하이브리드 특징 선택 기법)

  • In, Joo-Ho;Kim, Jung-Ho;Chae, Soo-Hoan
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.49-57
    • /
    • 2013
  • A novel approach for the feature selection is proposed, which is the important preprocessing task of on-line document classification. In previous researches, the features based on information from their single population for feature selection task have been selected. In this paper, a mixed feature set is constructed by selecting features from multi-population as well as single population based on various information. The mixed feature set consists of two feature sets: the original feature set that is made up of words on documents and the transformed feature set that is made up of features generated by LSA. The hybrid feature selection method using both filter and wrapper method is used to obtain optimal features set from the mixed feature set. We performed classification experiments using the obtained optimal feature sets. As a result of the experiments, our expectation that our approach makes better performance of classification is verified, which is over 90% accuracy. In particular, it is confirmed that our approach has over 90% recall and precision that have a low deviation between categories.

Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition (패턴 인식문제를 위한 유전자 알고리즘 기반 특징 선택 방법 개발)

  • Park Chang-Hyun;Kim Ho-Duck;Yang Hyun-Chang;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.466-471
    • /
    • 2006
  • IAn important problem of pattern recognition is to extract or select feature set, which is included in the pre-processing stage. In order to extract feature set, Principal component analysis has been usually used and SFS(Sequential Forward Selection) and SBS(Sequential Backward Selection) have been used as a feature selection method. This paper applies genetic algorithm which is a popular method for nonlinear optimization problem to the feature selection problem. So, we call it Genetic Algorithm Feature Selection(GAFS) and this algorithm is compared to other methods in the performance aspect.

Set Covering-based Feature Selection of Large-scale Omics Data (Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법)

  • Ma, Zhengyu;Yan, Kedong;Kim, Kwangsoo;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Biological Feature Selection and Disease Gene Identification using New Stepwise Random Forests

  • Hwang, Wook-Yeon
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.64-79
    • /
    • 2017
  • Identifying disease genes from human genome is a critical task in biomedical research. Important biological features to distinguish the disease genes from the non-disease genes have been mainly selected based on traditional feature selection approaches. However, the traditional feature selection approaches unnecessarily consider many unimportant biological features. As a result, although some of the existing classification techniques have been applied to disease gene identification, the prediction performance was not satisfactory. A small set of the most important biological features can enhance the accuracy of disease gene identification, as well as provide potentially useful knowledge for biologists or clinicians, who can further investigate the selected biological features as well as the potential disease genes. In this paper, we propose a new stepwise random forests (SRF) approach for biological feature selection and disease gene identification. The SRF approach consists of two stages. In the first stage, only important biological features are iteratively selected in a forward selection manner based on one-dimensional random forest regression, where the updated residual vector is considered as the current response vector. We can then determine a small set of important biological features. In the second stage, random forests classification with regard to the selected biological features is applied to identify disease genes. Our extensive experiments show that the proposed SRF approach outperforms the existing feature selection and classification techniques in terms of biological feature selection and disease gene identification.

Development of Interactive Feature Selection Algorithm(IFS) for Emotion Recognition

  • Yang, Hyun-Chang;Kim, Ho-Duck;Park, Chang-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.282-287
    • /
    • 2006
  • This paper presents an original feature selection method for Emotion Recognition which includes many original elements. Feature selection has some merits regarding pattern recognition performance. Thus, we developed a method called thee 'Interactive Feature Selection' and the results (selected features) of the IFS were applied to an emotion recognition system (ERS), which was also implemented in this research. The innovative feature selection method was based on a Reinforcement Learning Algorithm and since it required responses from human users, it was denoted an 'Interactive Feature Selection'. By performing an IFS, we were able to obtain three top features and apply them to the ERS. Comparing those results from a random selection and Sequential Forward Selection (SFS) and Genetic Algorithm Feature Selection (GAFS), we verified that the top three features were better than the randomly selected feature set.

A Step towards the Improvement in the Performance of Text Classification

  • Hussain, Shahid;Mufti, Muhammad Rafiq;Sohail, Muhammad Khalid;Afzal, Humaira;Ahmad, Ghufran;Khan, Arif Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2162-2179
    • /
    • 2019
  • The performance of text classification is highly related to the feature selection methods. Usually, two tasks are performed when a feature selection method is applied to construct a feature set; 1) assign score to each feature and 2) select the top-N features. The selection of top-N features in the existing filter-based feature selection methods is biased by their discriminative power and the empirical process which is followed to determine the value of N. In order to improve the text classification performance by presenting a more illustrative feature set, we present an approach via a potent representation learning technique, namely DBN (Deep Belief Network). This algorithm learns via the semantic illustration of documents and uses feature vectors for their formulation. The nodes, iteration, and a number of hidden layers are the main parameters of DBN, which can tune to improve the classifier's performance. The results of experiments indicate the effectiveness of the proposed method to increase the classification performance and aid developers to make effective decisions in certain domains.

Improving the Performance of Korean Text Chunking by Machine learning Approaches based on Feature Set Selection (자질집합선택 기반의 기계학습을 통한 한국어 기본구 인식의 성능향상)

  • Hwang, Young-Sook;Chung, Hoo-jung;Park, So-Young;Kwak, Young-Jae;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.654-668
    • /
    • 2002
  • In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.

A Study on Statistical Feature Selection with Supervised Learning for Word Sense Disambiguation (단어 중의성 해소를 위한 지도학습 방법의 통계적 자질선정에 관한 연구)

  • Lee, Yong-Gu
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.22 no.2
    • /
    • pp.5-25
    • /
    • 2011
  • This study aims to identify the most effective statistical feature selecting method and context window size for word sense disambiguation using supervised methods. In this study, features were selected by four different methods: information gain, document frequency, chi-square, and relevancy. The result of weight comparison showed that identifying the most appropriate features could improve word sense disambiguation performance. Information gain was the highest. SVM classifier was not affected by feature selection and showed better performance in a larger feature set and context size. Naive Bayes classifier was the best performance on 10 percent of feature set size. kNN classifier on under 10 percent of feature set size. When feature selection methods are applied to word sense disambiguation, combinations of a small set of features and larger context window size, or a large set of features and small context windows size can make best performance improvements.

Dimensionality Reduction of Feature Set for API Call based Android Malware Classification

  • Hwang, Hee-Jin;Lee, Soojin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.41-49
    • /
    • 2021
  • All application programs, including malware, call the Application Programming Interface (API) upon execution. Recently, using those characteristics, attempts to detect and classify malware based on API Call information have been actively studied. However, datasets containing API Call information require a large amount of computational cost and processing time. In addition, information that does not significantly affect the classification of malware may affect the classification accuracy of the learning model. Therefore, in this paper, we propose a method of extracting a essential feature set after reducing the dimensionality of API Call information by applying various feature selection methods. We used CICAndMal2020, a recently announced Android malware dataset, for the experiment. After extracting the essential feature set through various feature selection methods, Android malware classification was conducted using CNN (Convolutional Neural Network) and the results were analyzed. The results showed that the selected feature set or weight priority varies according to the feature selection methods. And, in the case of binary classification, malware was classified with 97% accuracy even if the feature set was reduced to 15% of the total size. In the case of multiclass classification, an average accuracy of 83% was achieved while reducing the feature set to 8% of the total size.

A Study for Feature Selection in the Intrusion Detection System (침입탐지시스템에서의 특징 선택에 대한 연구)

  • Han, Myung-Mook
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.87-95
    • /
    • 2006
  • An intrusion can be defined as any set of actors that attempt to compromise the integrity, confidentiality and availability of computer resource and destroy the security policy of computer system. The Intrusion Detection System that detects the intrusion consists of data collection, data reduction, analysis and detection, and report and response. It is important for feature selection to detect the intrusion efficiently after collecting the large set of data of Intrusion Detection System. In this paper, the feature selection method using Genetic Algorithm and Decision Tree is proposed. Also the method is verified by the simulation with KDD data.

  • PDF