본 논문에서는 불변 점 특징에 기반한 카메라 동작인수 측정방법을 제안한다. 일반적으로 영상의 특징정보는 카메라 뷰포인트에 따라 변하는 단점이 있어 시간이 지나면 정보량이 증가하게 된다. 또한 카메라 외부인수 산출을 위한 비선형 최소제곱 측정을 이용한 LM 방법은 초기값에 따라 최소점에 근접하는 반복회수가 다르고 지역 최소점에 빠질 경우 수렴시간이 증가하는 단점이 있다. 본 논문에서는 이러한 문제를 개선하기 위해 첫째, 기하학의 불변 벡터를 사용하여 특징 모델을 구성하는 것을 제안하였다. 둘째, 2D 호모그래피와 LM 방법을 이용하여 정확도와 수렴도를 향상시키는 2단계 측정 방법을 제안하였다. 실험에서는 제안한 알고리즘의 우수성을 입증하기 위해 기존방법과 제안한 방법을 비교 분석하였다.
인터레이스 방식의 카메라가로부터 사진을 촬영시, 카메라가 움직인다면, 짝수와 홀수라인의 두 영상의 불인치인 블러가 발생한다. 본 논문은 인터레이스 방식의 카메라의 떨림에 의한 짝수와 홀수라인 영상간의 불일치를 제거하는 알고리즘을 제안하였다. 블러된 원 영상을 짝수라인과 홀수라인 영상으로 분리한다. 분리된 각 영상을 보간법을 이용하여 원 영상 크기의 영상을 생성한다. 만약 보간된 영상간의 큰 차이가 발생하면, 사진 촬영시 카메라가 움직인 경우이다 이 경우에는, 특징점 추출 및 정합, sub-pixel정합, 오류 정합된 광류제거, 영상모자이크를 통하여 불리된 두 영상으로부터 블러가 제거된 영상을 취득하는 것이다. 본 논문은 제안한 알고리즘이 카메라의 다양한 움직임의 영향으로 블러된 영상에서 선명한 영상을 생성 할 수 있음을 보였다.
Point clouds have ability to express the spatial entities, however, the point clouds redundancy always involves some uncertainties in computer recognition and model construction. Therefore, point clouds thinning is an indispensable step in point clouds model reconstruction and other applications. To overcome the shortcomings of complex classification index and long time consuming in existing point clouds thinning algorithms, this paper proposes a point clouds fast thinning algorithm. Specifically, the two-dimensional index is established in plane linear array (x, y) for the scanned point clouds, and the thresholds of adjacent point distance difference and height difference are employed to further delete or retain the selected sample point. Sequentially, the index of sample point is traversed forwardly and backwardly until the process of point clouds thinning is completed. The results suggest that the proposed new algorithm can be applied to different targets when the thresholds are built in advance. Besides, the new method also performs superiority in time consuming, modelling accuracy and feature retention by comparing with octree thinning algorithm.
본 논문에서는 지문인식 시스템에 있어서 중간 단계인 Reference Point를 검출하는 방법을 제안하려고 한다. Reference Point는 지문 인식 방법들인 Minutiae 매칭 방법[1]과 Gabor filter를 사용한 Filterbank 방법[2]을 적용함에 있어서 feature를 추출할 때 사용되는 기준이 되는 Point이다. 그래서 동일인에 대해서는 항상 불변하고 정확한 위치를 찾아내는 정도가 지문 인식 시스템의 인식률에 크게 영향을 미치게 된다. 본 논문에서 제안하는 방법은 Gray Image에서 직접 Statistical한 방법을 사용하여 지문의 방향 분포를 구하고 이러한 방향 분포도로부터 얻어진 정보를 바탕으로 각 방향간의 거리를 측정하여 모든 방향 성분을 동일하게 유지하는 Reference Region을 찾게 된다. 이렇게 추출된 Reference Region내에서 SED(Statistical Equi-Distance)를 최대로 하는 좌표값을 Reference Point로 결정하게 된다.
Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.
본 논문은 도심을 촬영한 실내, 실외의 영상은 대부분 직육면체를 이룬다는 "Manhattan World" 가정을 기반으로 한 소실점의 직교성을 이용한 구조적인 소실점 검출 방법을 제안한다. 소실점들이 서로 직교하는 특징은 3개의 소실점 중 검출되지 않은 소실점을 추론하는데 매우 유용하게 사용될 수 있으며 소실점이 근접하여 검출되는 경우를 방지할 수 있다. 본 논문에서는 통계적인 접근을 통해 수직 소실점을 검출하고 구조적인 방법으로 수평, 전방 소실점을 검출하였다. 실험결과에서는 제안된 방법이 기존 방법과 비교하여 소실점 검출 정확도가 향상됨을 보인다.
3D scanning is a technique to measure the 3D shape information of the object. Shape information obtained by 3D scanning is expressed either as point cloud or as polygon mesh type data that can be widely used in various areas such as reverse engineering and quality inspection. 3D scanning should be performed as accurate as possible since the scanned data is highly required to detect the features on an object in order to scan the shape of the object more precisely. In this study, we propose the method on finding the location of feature more accurately, based on the extended Biplane SNAKE with global optimization. In each iteration, we project the feature lines obtained by the extended Biplane SNAKE into each image plane and move the feature lines to the features on each image. We have applied this approach to real models to verify the proposed optimization algorithm.
본 논문에서는 사람의 표정이 아닌 애니메이션 캐릭터의 표정을 주색상과 특징점을 효과적으로 분석하여 인식하는 방법을 제안한다. 제안된 방법에서는 먼저 캐릭터의 특성에 맞게 간략화한 메쉬모델을 정의하고 캐릭터 얼굴과 얼굴의 구성요소를 주색상을 이용하여 검출한 후 각 구성요소의 에지를 활용하여 표정인식을 위한 특징점을 추출한다. 그런 다음, 각 특징점의 위치와 모양 정보를 신경망 학습을 통해 해당 AU로 분류하고, 제안된 표정 AU 명세서를 이용해 최종적으로 표정을 인식한다. 실험에서는 제안된 애니메이션 캐릭터의 표정인식 방법이 무표정을 포함하여 기쁨, 슬픔, 놀람, 화남, 공포의 6가지 표정을 비교적 신뢰성 있게 인식함을 애니메이션 영상을 이용한 실험을 통해 보여준다.
This paper suggests a monitoring method for the pulsed laser spot welding of the thin metal sheets using a point IR(InfraRed) sensor. A new criterion was introduced and the experimental results guaranteed the efficiency. The ideal radiation feature was derived from the mathematical model and was simulated. The radiation feature is robust to withstand the change of measuring condition and can be used to detect the absorbed laser energy. In an experiment, the radiation feature was examined for the differect laser energy. The pulse width and the laser power was variated and the radiation feature was examined. In the other experiment, the relationship between the weld strength and radiation feature was examined. Artificial Neural Network(ANN) was employed to find out the relationship. The correlation coefficient between the real strength and the estimated strength is high as 0.94 and the mean square error is low as 0.64 kgf learned parts. Another group of the welds was used to appraise the learning efficiency. The correlation coefficient between the measured and the estimated weld strength is high as 0.91.
The most important factor of mobile robot is to build a map for surrounding environment and estimate its localization. This paper proposes a real-time localization and map building method through 3-D reconstruction using scale invariant feature from monocular camera. Mobile robot attached monocular camera looking wall extracts scale invariant features in each image using SIFT(Scale Invariant Feature Transform) as it follows wall. Matching is carried out by the extracted features and matching feature map that is transformed into absolute coordinates using 3-D reconstruction of point and geometrical analysis of surrounding environment build, and store it map database. After finished feature map building, the robot finds some points matched with previous feature map and find its pose by affine parameter in real time. Position error of the proposed method was maximum. 8cm and angle error was within $10^{\circ}$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.