• Title/Summary/Keyword: Feature Parameter

Search Result 535, Processing Time 0.023 seconds

Feature Parameter Extraction and Speech Recognition Using Matrix Factorization (Matrix Factorization을 이용한 음성 특징 파라미터 추출 및 인식)

  • Lee Kwang-Seok;Hur Kang-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1307-1311
    • /
    • 2006
  • In this paper, we propose new speech feature parameter using the Matrix Factorization for appearance part-based features of speech spectrum. The proposed parameter represents effective dimensional reduced data from multi-dimensional feature data through matrix factorization procedure under all of the matrix elements are the non-negative constraint. Reduced feature data presents p art-based features of input data. We verify about usefulness of NMF(Non-Negative Matrix Factorization) algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment results, we confirm that proposed feature parameter is superior to MFCC(Mel-Frequency Cepstral Coefficient) in recognition performance that is used generally.

Speaker Independent Recognition Algorithm based on Parameter Extraction by MFCC applied Wiener Filter Method (위너필터법이 적용된 MFCC의 파라미터 추출에 기초한 화자독립 인식알고리즘)

  • Choi, Jae-Seung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1149-1154
    • /
    • 2017
  • To obtain good recognition performance of speech recognition system under background noise, it is very important to select appropriate feature parameters of speech. The feature parameter used in this paper is Mel frequency cepstral coefficient (MFCC) with the human auditory characteristics applied to Wiener filter method. That is, the feature parameter proposed in this paper is a new method to extract the parameter of clean speech signal after removing background noise. The proposed method implements the speaker recognition by inputting the proposed modified MFCC feature parameter into a multi-layer perceptron network. In this experiments, the speaker independent recognition experiments were performed using the MFCC feature parameter of the 14th order. The average recognition rates of the speaker independent in the case of the noisy speech added white noise are 94.48%, which is an effective result. Comparing the proposed method with the existing methods, the performance of the proposed speaker recognition is improved by using the modified MFCC feature parameter.

Features for Figure Speech Recognition in Noise Environment (잡음환경에서의 숫자음 인식을 위한 특징파라메타)

  • Lee, Jae-Ki;Koh, Si-Young;Lee, Kwang-Suk;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.473-476
    • /
    • 2005
  • This paper is proposed a robust various feature parameters in noise. Feature parameter MFCC(Mel Frequency Cepstral Coefficient) used in conventional speech recognition shows good performance. But, parameter transformed feature space that uses PCA(Principal Component Analysis)and ICA(Independent Component Analysis) that is algorithm transformed parameter MFCC's feature space that use in old for more robust performance in noise is compared with the conventional parameter MFCC's performance. The result shows more superior performance than parameter and MFCC that feature parameter transformed by the result ICA is transformed by PCA.

  • PDF

A Study on Korean Isolated Word Speech Detection and Recognition using Wavelet Feature Parameter (Wavelet 특징 파라미터를 이용한 한국어 고립 단어 음성 검출 및 인식에 관한 연구)

  • Lee, Jun-Hwan;Lee, Sang-Beom
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2238-2245
    • /
    • 2000
  • In this papr, eatue parameters, extracted using Wavelet transform for Korean isolated worked speech, are sued for speech detection and recognition feature. As a result of the speech detection, it is shown that it produces more exact detection result than eh method of using energy and zero-crossing rate on speech boundary. Also, as a result of the method with which the feature parameter of MFCC, which is applied to he recognition, it is shown that the result is equal to the result of the feature parameter of MFCC using FFT in speech recognition. So, it has been verified the usefulness of feature parameters using Wavelet transform for speech analysis and recognition.

  • PDF

State-Dependent Weighting of Multiple Feature Parameters in HMM Recognizer (HMM 인식기에서 상태별 다중 특징 파라미터 가중)

  • 손종목;배건성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper, we proposed a new approach to weight each feature parameter by considering the dispersion of feature parameters and its degree of contribution to recognition rate. We determined the total distribution factor that is proportional to recognition rate of each feature parameter and the dispersion factor according to the dispersion of each feature parameter. Then. we determined state-dependent weighting using the total distribution factor and dispersion factor. To verify the validity of the proposed approach, recognition experiments were performed using the PLU(Phoneme-Like Unit)-based HMM. Experimental results showed the improvement of 7.7% at the recognition rate using the proposed method.

  • PDF

A feature-based motion parameter estimation using bi-directional correspondence scheme (쌍방향 대응기법을 이용한 특징점 기반 움직임 계수 추정)

  • 서종열;김경중;임채욱;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2776-2788
    • /
    • 1996
  • A new feature-based motion parameter estimation for arbitrary-shaped regions is proposed. Existing motion parameter estimation algorithms such as gradient-based algorithm require iterations that are very sensitive to initial values and which often converge to a local minimum. In this paper, the motion parameters of an object are obtained by solving a set of linear equations derived by the motion of salient feature points of the object. In order to estimate the displacement of the feature points, a new process called the "bi-directional correspondence scheme" is proposed to ensure the robjstness of correspondence. The proposed correspondence scheme iteratively selects the feature points and their corresponding points until unique one-to-one correspondence is established. Furthermore, initially obtained motion paramerters are refined using an iterative method to give a better performance. The proposed algorithm can be used for motion estimationin object-based image coder, and the experimental resuls show that the proposed method outperforms existing schemes schemes in estimating motion parameters of objects in image sequences.sequences.

  • PDF

Parts-based Feature Extraction of Speech Spectrum Using Non-Negative Matrix Factorization (Non-Negative Matrix Factorization을 이용한 음성 스펙트럼의 부분 특징 추출)

  • 박정원;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.

  • PDF

A Study on Feature Extraction of Transformers Aging Signal using discrete Wavelet Transform Technique (이산 웨이블렛 변환 기법을 이용한 변압기 열화신호의 특징추출에 관한 연구)

  • Park, Jae-Jun;Kwon, Dong-Jin;Song, Yeong-Cheol;Ahn, Chang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.121-129
    • /
    • 2001
  • In this paper, a new efficient feature extraction method based on Daubechies discrete wavelet transform is presented. This paper especially deals with the assessment of process statistical parameter using the features extracted from the wavelet coefficients of measured acoustic emission signals. Since the parameter assessment using all wavelet coefficients will often turn out leads to inefficient or inaccurate results, we selected that level-3 stage of multi decomposition in discrete wavelet transform. We make use of the feature extraction parameter namely, maximum value of acoustic emission signal, average value, dispersion, skewness, kurtosis, etc. The effectiveness of this new method has been verified on ability a diagnosis transformer go through feature extraction in stage of aging(the early period, the middle period, the last period)

  • PDF

Performance Evaluation of Speech Recognition Using the Reconstructed Feature Parameter with Voiced-Unvoiced Measure (유ㆍ무성음 척도를 포함한 재구성 특징 파라미터의 음성 인식 성능평가)

  • 이광석;한학용;고시영;허강인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, we research the robust speech recognition for the syllables and phoneme units with the feature parameter including the voiced-unvoiced measures for the confusable words. In order to make it possible, we propose the measure representing the voiced-unvoiced degree by using the HPS(Harmonic Product Spectrum) information, used on pitch detection. We proposed this measures with the sharpnes, peak count and height measure of HPS. We reconstructed the feature parameter including this measures, then we performs the speech recognition experiments and compared with the typical feature parameters under the CVC type confusable syllables DB.

Feature Parameter Extraction for Shape Information Analysis of 2-D Moving Object (2-D 이동물체의 형태 정보 분석을 위한 특징 파라미터 추출)

  • 김윤호;이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.11
    • /
    • pp.1132-1142
    • /
    • 1991
  • This paper proposed a method of feature parameter extraction for shape information analysis of moving object. In the 2-D plane, moving object are extracted by the difference method. Feature parameters of moving object are chosen area, perimeter, a/p ratio, vertex, x/y ratio. We changed brightness variation from the range of 600Lux to the 1400Lux and then determined Permissible Error range of feature parameter due to the brightness variation. So as to verify the validity of proposed method, experiment are performed with a toy car and it's results showed that decision error was less than 6%.

  • PDF