Automatic butterfly identification using images is one of the interesting research fields because it helps the related researchers studying species diversity and evolutionary and development process a lot in this field. The performance of the butterfly species identification system is dependent heavily on the quality of selected features. In this paper, we propose color intensity (CI) entropy by using the distribution of color intensities in a butterfly image. We show color intensity entropy can increase the recognition rate by 10% if it is used together with previously suggested branch length similarity entropy. In addition, the performance comparison with other features such as Eigenface, 2D Fourier transform, and 2D wavelet transform is conducted against several well known machine learning methods.
Kim, Jong-hee;Lee, Eun-seok;Kim, Jeong-su;Park, Jong-kook;Kim, Jong-bae
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.309-311
/
2014
Despite increasing demands for big data application based on the analysis of scattered unstructured data, few relevant studies have been reported. Accordingly, the present study suggests a technique enabling a sentence-based semantic analysis by extracting objects from collected web information and automatically analyzing the relationships between such objects with collective intelligence and language processing technology. To be specific, collected information is stored in DBMS in a structured form, and then morpheme and feature information is analyzed. Obtained morphemes are classified into objects of interest, marginal objects and objects of non-interest. Then, with an inter-object attribute recognition technique, the relationships between objects are analyzed in terms of the degree, scope and nature of such relationships. As a result, the analysis of relevance between the information was based on certain keywords and used an inter-object relationship extraction technique that can determine positivity and negativity. Also, the present study suggested a method to design a system fit for real-time large-capacity processing and applicable to high value-added services.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.37
no.3
/
pp.12-26
/
2000
In this paper, we propose a post-processing algorithm to remove false minutiae which decrease the overall performance of an automatic fingerprint identification system by increasing computational complexity, FAR(False Acceptance Rate), and FRR(False Rejection Rate) in matching process. The proposed algorithm extracts candidate minutiae from thinned fingerprint image. Considering characteristics of the thinned fingerprint image, the algorithm selects the minutiae that may be false and located in recoverable area. If the area where the selected minutiae reside is thinned incorrectly due to noise and loss of information, the algorithm recovers the area and the selected minutiae are removed from the candidate minutiae list. By examining the ridge pattern of the block where the candidate minutiae are found, true minutiae are recovered and in contrast, false minutiae are filtered out. In an experiment, Fingerprint images from NIST special database 14 are tested and the result shows that the proposed algorithm reduces the false minutiae extraction rate remarkably and increases the overall performance of an automatic fingerprint identification system.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.8
/
pp.530-536
/
2020
The use of minutiae by fingerprint readers is robust against presentation attacks, but one weakness is that the mismatch rate is high. Therefore, minutiae tend to be used with skeleton images. There have been many studies on security vulnerabilities in the characteristics of minutiae, but vulnerability studies on the skeleton are weak, so this study attempts to analyze the vulnerability of presentation attacks against the skeleton. To this end, we propose a method based on the skeleton to recover the original fingerprint using a learning algorithm. The proposed method includes a new learning model, Pix2Pix, which adds a latent vector to the existing Pix2Pix model, thereby generating a natural fingerprint. In the experimental results, the original fingerprint is restored using the proposed machine learning, and then, the restored fingerprint is the input for the fingerprint reader in order to achieve a good recognition rate. Thus, this study verifies that fingerprint readers using the skeleton are vulnerable to presentation attacks. The approach presented in this paper is expected to be useful in a variety of applications concerning fingerprint restoration, video security, and biometrics.
As growing interest in Human-Computer Interaction(HCI), research on HCI has been actively conducted. Also with that, research on Natural User Interface/Natural User eXperience(NUI/NUX) that uses user's gesture and voice has been actively conducted. In case of NUI/NUX, it needs recognition algorithm such as gesture recognition or voice recognition. However these recognition algorithms have weakness because their implementation is complex and a lot of time are needed in training because they have to go through steps including preprocessing, normalization, feature extraction. Recently, Kinect is launched by Microsoft as NUI/NUX development tool which attracts people's attention, and studies using Kinect has been conducted. The authors of this paper implemented hand-mouse interface with outstanding intuitiveness using the physical features of a user in a previous study. However, there are weaknesses such as unnatural movement of mouse and low accuracy of mouse functions. In this study, we designed and implemented a hand mouse interface which introduce a new concept called 'Virtual monitor' extracting user's physical features through Kinect in real-time. Virtual monitor means virtual space that can be controlled by hand mouse. It is possible that the coordinate on virtual monitor is accurately mapped onto the coordinate on real monitor. Hand-mouse interface based on virtual monitor concept maintains outstanding intuitiveness that is strength of the previous study and enhance accuracy of mouse functions. Further, we increased accuracy of the interface by recognizing user's unnecessary actions using his concentration indicator from his encephalogram(EEG) data. In order to evaluate intuitiveness and accuracy of the interface, we experimented it for 50 people from 10s to 50s. As the result of intuitiveness experiment, 84% of subjects learned how to use it within 1 minute. Also, as the result of accuracy experiment, accuracy of mouse functions (drag(80.4%), click(80%), double-click(76.7%)) is shown. The intuitiveness and accuracy of the proposed hand-mouse interface is checked through experiment, this is expected to be a good example of the interface for controlling the system by hand in the future.
In Korea, quality evaluation of dried oak mushrooms are done first by classifying them into more than 10 different categories based on the state of opening of the cap, surface pattern, and colors. And mushrooms of each category are further classified into 3 or 4 groups based on its shape and size, resulting into total 30 to 40 different grades. Quality evaluation and sorting based on the external visual features are usually done manually. Since visual features of mushroom affecting quality grades are distributed over the entire surface of the mushroom, both front (cap) and back (stem and gill) surfaces should be inspected thoroughly. In fact, it is almost impossible for human to inspect every mushroom, especially when they are fed continuously via conveyor. In this paper, considering real time on-line system implementation, image processing algorithms utilizing artificial neural network have been developed for the quality grading of a mushroom. The neural network based image processing utilized the raw gray value image of fed mushrooms captured by the camera without any complex image processing such as feature enhancement and extraction to identify the feeding state and to grade the quality of a mushroom. Developed algorithms were implemented to the prototype on-line grading and sorting system. The prototype was developed to simplify the system requirement and the overall mechanism. The system was composed of automatic devices for mushroom feeding and handling, a set of computer vision system with lighting chamber, one chip microprocessor based controller, and pneumatic actuators. The proposed grading scheme was tested using the prototype. Network training for the feeding state recognition and grading was done using static images. 200 samples (20 grade levels and 10 per each grade) were used for training. 300 samples (20 grade levels and 15 per each grade) were used to validate the trained network. By changing orientation of each sample, 600 data sets were made for the test and the trained network showed around 91 % of the grading accuracy. Though image processing itself required approximately less than 0.3 second depending on a mushroom, because of the actuating device and control response, average 0.6 to 0.7 second was required for grading and sorting of a mushroom resulting into the processing capability of 5,000/hr to 6,000/hr.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.41-43
/
2022
In order to prevent and block infectious diseases caused by the recent COVID-19 pandemic, non-contact biometric information acquisition and analysis technology is attracting attention. The invasive and attached biometric information acquisition method accurately has the advantage of measuring biometric information, but has a risk of increasing contagious diseases due to the close contact. To solve these problems, the non-contact method of extracting biometric information such as human fingerprints, faces, iris, veins, voice, and signatures with automated devices is increasing in various industries as data processing speed increases and recognition accuracy increases. However, although the accuracy of the non-contact biometric data acquisition technology is improved, the non-contact method is greatly influenced by the surrounding environment of the object to be measured, which is resulting in distortion of measurement information and poor accuracy. In this paper, we propose a context-based bio-signal modeling technique for the interpretation of personalized information (image, signal, etc.) for bio-information analysis. Context-based biometric information modeling techniques present a model that considers contextual and user information in biometric information measurement in order to improve performance. The proposed model analyzes signal information based on the feature probability distribution through context-based signal analysis that can maximize the predicted value probability.
Park, Daeryoon;Ahn, Joongmin;Jang, Junhyeok;Yu, Wonjin;Kim, Wooyeol;Bae, Youngkwon;Yoo, Inhwan
Journal of The Korean Association of Information Education
/
v.24
no.1
/
pp.49-57
/
2020
The society we are living in has being changed to the age of the intelligent information society after passing through the knowledge-based information society in the early 21st century. In this study, we have developed the instructional model for software education based on the machine learning which is a field of artificial intelligence(AI) to enhance the core competencies of learners required in the intelligent information society. This model is focusing on enhancing the core competencies through the process of problem-solving as well as reducing the burden of learning about AI itself. The specific stages of the developed model are consisted of seven levels which are 'Problem Recognition and Analysis', 'Data Collection', 'Data Processing and Feature Extraction', 'ML Model Training and Evaluation', 'ML Programming', 'Application and Problem Solving', and 'Share and Feedback'. As a result of applying the developed model in this study, we were able to observe the positive response about learning from the students and parents. We hope that this research could suggest the future direction of not only the instructional design but also operation of software education program based on machine learning.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.12
/
pp.546-554
/
2019
Typically, closed-circuit television (CCTV) monitoring is mainly used for post-processes (i.e. to provide evidence after an incident has occurred), but by using a streaming video feed, machine-based learning, and advanced image recognition techniques, current technology can be extended to respond to crimes or reports of missing persons in real time. The multi-CCTV cooperation technique developed in this study is a program model that delivers similarity information about a suspect (or moving object) extracted via CCTV at one location and sent to a monitoring agent to track the selected suspect or object when he, she, or it moves out of range to another CCTV camera. To improve the operating efficiency of local government CCTV control centers, we describe here the partial automation of a CCTV control system that currently relies upon monitoring by human agents. We envisage an integrated crime prevention service, which incorporates the cooperative CCTV network suggested in this study and that can easily be experienced by citizens in ways such as determining a precise individual location in real time and providing a crime prevention service linked to smartphones and/or crime prevention/safety information.
Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
Journal of Internet Computing and Services
/
v.25
no.2
/
pp.57-67
/
2024
This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.