• 제목/요약/키워드: Feature Extraction and Recognition

검색결과 821건 처리시간 0.033초

티타늄 용접부의 용접결함평가를 위한 형상인식 특징추출에 관한 연구 (A Study on the Feature Extraction of Pattern Recognition for Weld Defects Evaluation of Titanium Weld Zone)

  • 윤인식
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.17-22
    • /
    • 2011
  • This study proposes feature extraction method of pattern recognition by evaluation of weld defects in weld zone of titanium. For this purpose, analysis objectives in this study are features of attractor quadrant and fractal dimension. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as porosity of weld zone. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 0.87 and 1.00 in the case of part of 0.5 skip distance and 0.72 and 0.93 in the case of part of 1.0 skip distance were proposed on the basis of fractal dimensions. Attractor quadrant point, feature values of 1.322 and 1.172 in the case of ${\phi}1{\times}3mm$ porosity and 2.264 and 307 in the case of ${\phi}3{\times}3mm$ porosity were proposed on the basis of distribution value. The Proposed feature extraction of pattern recognition in this study can be used for safety evaluation of weld zone in titanium.

Hough변환을 이용한 문자인식 (Character recognition using Hough transform)

  • 강선미;김봉석;황승옥;양윤모;김덕진
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1991년도 추계종합학술발표회논문집
    • /
    • pp.77-80
    • /
    • 1991
  • This paper proposes a new feature extraction method which is effectively used in character recognition, and validate the effectiveness through various computational methods for similiarity degree. To get feature vectors used in this method, Hough transform is applied to character image, which is used for edge extraction in image processing. By that transformation technique, strokes could be extracted and feature vectors constructed suitably. The characteristic of this method is solving the difficulties in stroke extraction through transform space analysis, which is induced by noise and blurring, and representing high recognition rate 99.3% within 10 candidates in relative low dimension.

FERET DATA SET에서의 PCA와 ICA의 비교

  • Kim, Sung-Soo;Moon, Hyeon-Joon;Kim, Jaihie
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2355-2358
    • /
    • 2003
  • The purpose of this paper is to investigate two major feature extraction techniques based on generic modular face recognition system. Detailed algorithms are described for principal component analysis (PCA) and independent component analysis (ICA). PCA and ICA ate statistical techniques for feature extraction and their incorporation into a face recognition system requires numerous design decisions. We explicitly state the design decisions by introducing a modular-based face recognition system since some of these decision are not documented in the literature. We explored different implementations of each module, and evaluate the statistical feature extraction algorithms based on the FERET performance evaluation protocol (the de facto standard method for evaluating face recognition algorithms). In this paper, we perform two experiments. In the first experiment, we report performance results on the FERET database based on PCA. In the second experiment, we examine performance variations based on ICA feature extraction algorithm. The experimental results are reported using four different categories of image sets including front, lighting, and duplicate images.

  • PDF

MFCC와 LPC 특징 추출 방법을 이용한 음성 인식 오류 보정 (Speech Recognition Error Compensation using MFCC and LPC Feature Extraction Method)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권6호
    • /
    • pp.137-142
    • /
    • 2013
  • 음성 인식 시스템은 부정확한 음성 신호의 입력으로 특징을 추출하여 인식할 경우 오인식의 결과가 나타나거나 유사한 음소로 인식된다. 따라서 본 논문에서는 음소가 갖는 특징을 기반으로 음소 유사율과 신뢰도 측정을 이용한 음성 인식 오류 보정 방법을 제안하였다. 음소 유사율은 학습 모델의 음소에 MFCC와 LPC 특징 추출 방법을 이용하여 구하였으며 신뢰도로 측정하였다. 음소 유사율과 신뢰도를 측정하여 오인식되는 오류를 최소화하였으며 음성 인식 과정에서 오류로 판명된 음성에 대하여 오류 보정을 수행하였다. 본 논문에서 제안한 시스템을 적용한 결과 98.3%의 인식률과 95.5%의 오류 보정율을 나타내었다.

한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구 (A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition)

  • 금지수;이현수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

용접결함의 형상인식을 위한 특징추출 (The Feature Extraction of Welding Flaw for Shape Recognition)

  • 김재열;유신;김창현;송경석;양동조;이창선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

FPGA-Based Hardware Accelerator for Feature Extraction in Automatic Speech Recognition

  • Choo, Chang;Chang, Young-Uk;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • 제13권3호
    • /
    • pp.145-151
    • /
    • 2015
  • We describe in this paper a hardware-based improvement scheme of a real-time automatic speech recognition (ASR) system with respect to speed by designing a parallel feature extraction algorithm on a Field-Programmable Gate Array (FPGA). A computationally intensive block in the algorithm is identified implemented in hardware logic on the FPGA. One such block is mel-frequency cepstrum coefficient (MFCC) algorithm used for feature extraction process. We demonstrate that the FPGA platform may perform efficient feature extraction computation in the speech recognition system as compared to the generalpurpose CPU including the ARM processor. The Xilinx Zynq-7000 System on Chip (SoC) platform is used for the MFCC implementation. From this implementation described in this paper, we confirmed that the FPGA platform is approximately 500× faster than a sequential CPU implementation and 60× faster than a sequential ARM implementation. We thus verified that a parallelized and optimized MFCC architecture on the FPGA platform may significantly improve the execution time of an ASR system, compared to the CPU and ARM platforms.

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.23-31
    • /
    • 2002
  • 본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.

  • PDF

미소결함의 형상인식을 위한 디지털 신호처리 적용에 관한 연구 (A Study on the Application of Digital Signal Processing for Pattern Recognition of Microdefects)

  • 홍석주
    • 한국생산제조학회지
    • /
    • 제9권1호
    • /
    • pp.119-127
    • /
    • 2000
  • In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.

  • PDF