• 제목/요약/키워드: Feature Extraction and Recognition

검색결과 821건 처리시간 0.024초

배경영상에서 유전자 알고리즘을 이용한 얼굴의 각 부위 추출 (Facial Feature Extraction using Genetic Algorithm from Original Image)

  • 이형우;이상진;박석일;민홍기;홍승홍
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.214-217
    • /
    • 2000
  • Many researches have been performed for human recognition and coding schemes recently. For this situation, we propose an automatic facial feature extraction algorithm. There are two main steps: the face region evaluation from original background image such as office, and the facial feature extraction from the evaluated face region. In the face evaluation, Genetic Algorithm is adopted to search face region in background easily such as office and household in the first step, and Template Matching Method is used to extract the facial feature in the second step. We can extract facial feature more fast and exact by using over the proposed Algorithm.

  • PDF

척추 자기 공명 영상에서 특징 벡터에 기반 한 디스크 질환의 자동 인식 (Automatic Disk Disease Recognition based on Feature Vector in T-L Spine Magnetic Resonance Image)

  • 홍재성;이성기
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.233-242
    • /
    • 1998
  • 본 논문에서는 척추 자기공명영상에 대하여 자동적으로 질환에 관련된 특징 벡터들을 추출하고 디스크 질환을 인식하는 방법을 제안하였다. 척추 자기공명영상은 절단면에 따라 시상 단면 영상과 축 단면 영상으로 나누어 진다. 두가지 영상에서 질환에 관련된 특징 벡터를 추출하여 질환의 유무와 종류를 인식하는데 사용하였다. 시상 단면 영상에서는 각 부위에 해당하는 영역의 동질성을 이용하여 디스크 부분을 추출한 후 영역레이블링 과정을 통해 전체적인 크기와 돌출 정도를 구해서 질환을 나타내는 특징으로 이용하였다. 축 단면 영상에서는 템플릿 정합을 이용하여 디스크 영역을 찾고 경계선을 추출하기 위해 세기와 방향성을 고려한 연산자를 사용했다. 경계선의 모양을 분석해서 디스크 돌출 정도에 관한 수치를 얻었다. 이렇게 얻은 특징벡터들은 유사한 질환을 가진 환자의 영상을 찾기 위한 의료 영상 데이터 베이스에 사용될 수 있으며, 많은 양의 영상에서 질환이 나타나 있는 것을 일차적으로 선별하여 전문의에게 제공하는데 이용될 수 있을 것으로 예상한다.

  • PDF

다중 접근 메모리 시스템을 이용한 고속 지문인식 특징추출 시스템 (Feature Extraction System for High-Speed Fingerprint Recognition using the Multi-Access Memory System)

  • 박종선;김재희;고경식;박종원
    • 한국멀티미디어학회논문지
    • /
    • 제16권8호
    • /
    • pp.914-926
    • /
    • 2013
  • 최근 보안 시스템 중에서 지문인식을 이용한 보안 시스템은 다른 보안 시스템에 비해 유일성과 편의성 등의 장점을 가짐으로써 많은 사람들이 관심을 갖는 분야이다. 지문인식 시스템에 있어서 가장 중요한 사항은 실제 지문과 영상을 통해 얻어진 지문간의 정합에서의 정확성과 지문 인식을 위해 사용하는 영상처리 알고리즘들을 신속하게 처리하는 데 있다. 기존의 지문인식 시스템은 특징 추출을 위해 사용하는 알고리즘들의 처리 시간을 줄이기 위해 전체 처리과정 중 일부 과정들을 생략함으로써 처리시간을 단축한다. 하지만 이 방식은 처리시간을 단축시킬 수 있는 반면 특징 추출에 대한 정확도가 떨어진다. 따라서 본 논문에서는 특징 추출에 대한 정확도를 높이기 위해 전체 처리 과정을 사용하면서 동시에 처리시간도 단축시킬 수 있는 다중 접근 메모리 시스템을 이용한 지문인식 특징 추출 알고리즘을 구현하였고, 구현된 시스템을 사용하였을때 다중접근 메모리 시스템과 시리얼 프로세서의 결과에 대해 correlation을 이용한 검증을 통해 제안된 방법의 신뢰도를 확인하였으며, 시리얼 프로세서에 비해 MAMS-PP64를 이용한 방법은 수행시간에서 약 1.56배 향상되었음을 확인하였다.

CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리 (Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System)

  • 최태웅;김순협
    • 한국음향학회지
    • /
    • 제32권1호
    • /
    • pp.79-85
    • /
    • 2013
  • CASA 시스템의 특징 추출은 시간의 연속성과 채널 간 유사성을 이용하여 청각 요소의 상관지도를 구성하여 사용한다. 채널 간 유사성을 교차 상관 계수를 이용하여 특징 추출 할 경우 상관성을 정량적으로 나타내기 위해 계산량이 많은 단점이 있다. 따라서 본 논문에서는 특징 추출 시 계산 량을 줄이기 위한 방법으로 비모수적 상관 계수를 이용한 특징 추출 방법을 제안하고 이를 CASA 시스템을 통하여 목적 음성을 분리하는 실험을 수행하였다. 목적 음성의 분리 성능을 평가하기 위하여 신호 대 잡음비를 측정한 결과, 제안 방식이 기존 방식에 비해 평균 0.14 dB의 미세한 성능 개선을 보였다.

Development of an Optimized Feature Extraction Algorithm for Throat Signal Analysis

  • Jung, Young-Giu;Han, Mun-Sung;Lee, Sang-Jo
    • ETRI Journal
    • /
    • 제29권3호
    • /
    • pp.292-299
    • /
    • 2007
  • In this paper, we present a speech recognition system using a throat microphone. The use of this kind of microphone minimizes the impact of environmental noise. Due to the absence of high frequencies and the partial loss of formant frequencies, previous systems using throat microphones have shown a lower recognition rate than systems which use standard microphones. To develop a high performance automatic speech recognition (ASR) system using only a throat microphone, we propose two methods. First, based on Korean phonological feature theory and a detailed throat signal analysis, we show that it is possible to develop an ASR system using only a throat microphone, and propose conditions of the feature extraction algorithm. Second, we optimize the zero-crossing with peak amplitude (ZCPA) algorithm to guarantee the high performance of the ASR system using only a throat microphone. For ZCPA optimization, we propose an intensification of the formant frequencies and a selection of cochlear filters. Experimental results show that this system yields a performance improvement of about 4% and a reduction in time complexity of 25% when compared to the performance of a standard ZCPA algorithm on throat microphone signals.

  • PDF

Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식 (The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors)

  • 최광미;김형균
    • 한국정보통신학회논문지
    • /
    • 제9권7호
    • /
    • pp.1513-1517
    • /
    • 2005
  • 본 논문에서는 얼굴영역을 검출하기위해 얼굴 피부색을 보다 효과적으로 모델링하기 위한 피부색 특성을 고려하여 밝기 성분을 제거한 Red, Blue, Green 채널을 모두 사용하는 Hue, Cb, Cg의 M배i-Channel 피부색 모델을 사용한다. 얼굴영역을 분리한 영상에 Harr 웨이블릿을 이용한 에지영상 추출과 얼굴영역의 특징벡터를 구하기 위하여 26개의 특징벡터를 사용한 효율적인 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

구 좌표계를 이용한 위치 불변 문자 특징 추출 (The Transition Invariant Feature Extraction of the Character using the Spherical Coordinate System)

  • 서춘원
    • 전자공학회논문지 IE
    • /
    • 제46권3호
    • /
    • pp.19-25
    • /
    • 2009
  • 본 논문에서는 구 좌표계를 이용하여 위치에 대한 불변 특징을 획득할 수 있는 문자 특징 추출 방법을 제시하고자 하였으며, 획득한 문자 특징 정보를 이용하여 해당 문자를 영상 중심으로 이동시켜 인식이 가능하도록 하는 시스템을 제안하고자 하였다. 또한 영상 중심에 이동시키는 방법으로 좌표 평균값에 의한 중심 이동법을 사용하여 인식에 필요한 시스템을 구현하였으며, 추출된 특징에 대하여 특징의 이질도를 검사하여, 각 특징의 이질도가 평균 78.14% 이상의 결과를 얻었다. 본 논문에서는 문자 인식을 위하여 구 좌표계를 이용한 문자 특징 추출 방법을 제시하였으며, 무게 중심법을 이용하여 문자를 중앙에 처리한 상태에서 이질도를 알아봄으로서 인식 가능한 형태의 문자 형태를 얻을 수 있는 가능성을 제시하였다.

Development of a Machine-Learning based Human Activity Recognition System including Eastern-Asian Specific Activities

  • Jeong, Seungmin;Choi, Cheolwoo;Oh, Dongik
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.127-135
    • /
    • 2020
  • The purpose of this study is to develop a human activity recognition (HAR) system, which distinguishes 13 activities, including five activities commonly dealt with in conventional HAR researches and eight activities from the Eastern-Asian culture. The eight special activities include floor-sitting/standing, chair-sitting/standing, floor-lying/up, and bed-lying/up. We used a 3-axis accelerometer sensor on the wrist for data collection and designed a machine learning model for the activity classification. Data clustering through preprocessing and feature extraction/reduction is performed. We then tested six machine learning algorithms for recognition accuracy comparison. As a result, we have achieved an average accuracy of 99.7% for the 13 activities. This result is far better than the average accuracy of current HAR researches based on a smartwatch (89.4%). The superiority of the HAR system developed in this study is proven because we have achieved 98.7% accuracy with publically available 'pamap2' dataset of 12 activities, whose conventionally met the best accuracy is 96.6%.

선형적 특징추출 방법의 특성 비교 (Comparisons of Linear Feature Extraction Methods)

  • 오상훈
    • 한국콘텐츠학회논문지
    • /
    • 제9권4호
    • /
    • pp.121-130
    • /
    • 2009
  • 이 논문은 고차원의 데이터를 저 차원으로 줄이는 방법 중 하나인 특징추출에 대한 방법들의 특성을 비교한다. 비교대상 방법은 전통적인 PCA(Principal Component Analysis)방법과 시각피질의 특성을 보인다고 알려진 ICA(Independent Component Analysis), 국소기반인식을 구현한 NMF(Non-negative Matrix Factorization), 그리고 이의 성능을 개선한 sNMF(Sparse NMF)로 정하였다. 추출된 특징들의 특성을 시각적으로 확인하기 위하여 필기체 숫자 영상을 대상으로 특징추출을 수행하였으며, 인식기에 적용한 효과의 확인을 위하여 추출된 특징을 다층퍼셉트론에 학습시켜보았다. 각 방법의 특성을 비교한 결과는 응용하고자 하는 문제에서 어떤 특징을 추출하기 원하느냐에 따라 특징추출 방법을 선정할 때 유용할 것이다.

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.