• Title/Summary/Keyword: Feature Distribution

Search Result 972, Processing Time 0.027 seconds

The Duration Feature of Acoustic Signals and Korean Speakers' Perception of English Stops (구간 신호 길이 자질과 한국인의 영어 파열음 지각)

  • Kim, Mun-Hyong;Jun, Jong-Sup
    • Phonetics and Speech Sciences
    • /
    • v.1 no.3
    • /
    • pp.19-28
    • /
    • 2009
  • This paper reports experimental findings about the duration feature of the acoustic components of English stops in Korean speakers' voicing perception. In our experiment, 35 participants discriminated between recorded stimuli and digitally transformed stimuli with different duration features from the original stimuli. 72 sets of paired stimuli are generated to test the effects of the duration feature in various phonetic contexts. The result of our experiment is a complicated cross-tabulation with 540 cells defined by five categorical independent variables plus one response variable. To find a meaningful generalization out of this complex frequency table, we ran logit log-linear regression analyses. Surprisingly, we have found that there is no single effect of the duration feature in all phonetic contexts on Korean speakers' perception of the voicing contrasts of English stops. Instead, the logit log-linear analyses reveal that there are interaction effects among phonetic contexts (=C), the places of articulation of stops (=P), and the voicing contrast (=V), and among duration (=T), phonetic contexts, and the places of articulation. To put it in mathematical terms, the distribution of the data can be explained by a simple log-linear equation, logF=${\mu}+{\lambda}CPV+{\lambda}TCP$.

  • PDF

2-D Conditional Moment for Recognition of Deformed Letters

  • Yoon, Myoong-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.6 no.2
    • /
    • pp.16-22
    • /
    • 2001
  • In this paper we mose a new scheme for recognition of deformed letters by extracting feature vectors based on Gibbs distributions which are well suited for representing the spatial continuity. The extracted feature vectors are comprised of 2-D conditional moments which are invariant under translation, rotation, and scale of an image. The Algorithm for pattern recognition of deformed letters contains two parts: the extraction of feature vector and the recognition process. (i) We extract feature vector which consists of an improved 2-D conditional moments on the basis of estimated conditional Gibbs distribution for an image. (ii) In the recognition phase, the minimization of the discrimination cost function for a deformed letters determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, recognition experiments with a generated document was conducted. on Workstation. Experiment results reveal that the proposed scheme has high recognition rate over 96%.

  • PDF

An Improved 2-D Moment Algorithm for Pattern Classification

  • Yoon, myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 1999
  • We propose a new algorithm for pattern classification by extracting feature vectors based on Gibbs distributions which are well suited for representing the characteristic of an images. The extracted feature vectors are comprised of 2-D moments which are invariant under translation rotation, and scale of the image less sensitive to noise. This implementation contains two puts: feature extraction and pattern classification First of all, we extract feature vector which consists of an improved 2-D moments on the basis of estimated Gibbs distribution Next, in the classification phase the minimization of the discrimination cost function for a specific pattern determines the corresponding template pattern. In order to evaluate the performance of the proposed scheme, classification experiments with training document sets of characters have been carried out on SUN ULTRA 10 Workstation Experiment results reveal that the proposed scheme had high classification rate over 98%.

  • PDF

Maximum A Posteriori Estimation-based Adaptive Search Range Decision for Accelerating HEVC Motion Estimation on GPU

  • Oh, Seoung-Jun;Lee, Dongkyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4587-4605
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) suffers from high computational complexity due to its quad-tree structure in motion estimation (ME). This paper exposes an adaptive search range decision algorithm for accelerating HEVC integer-pel ME on GPU which estimates the optimal search range (SR) using a MAP (Maximum A Posteriori) estimator. There are three main contributions; First, we define the motion feature as the standard deviation of motion vector difference values in a CTU. Second, a MAP estimator is proposed, which theoretically estimates the motion feature of the current CTU using the motion feature of a temporally adjacent CTU and its SR without any data dependency. Thus, the SR for the current CTU is parallelly determined. Finally, the values of the prior distribution and the likelihood for each discretized motion feature are computed in advance and stored at a look-up table to further save the computational complexity. Experimental results show in conventional HEVC test sequences that the proposed algorithm can achieves high average time reductions without any subjective quality loss as well as with little BD-bitrate increase.

Improving Naïve Bayes Text Classifiers with Incremental Feature Weighting (점진적 특징 가중치 기법을 이용한 나이브 베이즈 문서분류기의 성능 개선)

  • Kim, Han-Joon;Chang, Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.15B no.5
    • /
    • pp.457-464
    • /
    • 2008
  • In the real-world operational environment, most of text classification systems have the problems of insufficient training documents and no prior knowledge of feature space. In this regard, $Na{\ddot{i}ve$ Bayes is known to be an appropriate algorithm of operational text classification since the classification model can be evolved easily by incrementally updating its pre-learned classification model and feature space. This paper proposes the improving technique of $Na{\ddot{i}ve$ Bayes classifier through feature weighting strategy. The basic idea is that parameter estimation of $Na{\ddot{i}ve$ Bayes considers the degree of feature importance as well as feature distribution. We can develop a more accurate classification model by incorporating feature weights into Naive Bayes learning algorithm, not performing a learning process with a reduced feature set. In addition, we have extended a conventional feature update algorithm for incremental feature weighting in a dynamic operational environment. To evaluate the proposed method, we perform the experiments using the various document collections, and show that the traditional $Na{\ddot{i}ve$ Bayes classifier can be significantly improved by the proposed technique.

Optimizing Distribution Channels: How Digital Marketing Communication Enhances Trust and Loyalty in Indonesian Banking

  • Muhammad Diast REYHANRAFIF;La MANI;Astika Prima NITULAR;Hendra CRISWANTO;Irmawan RAHYADI
    • Journal of Distribution Science
    • /
    • v.22 no.8
    • /
    • pp.1-15
    • /
    • 2024
  • Purpose: This study explored how Indonesian banks utilize digital marketing communication strategies to optimize their distribution channels, leading to enhanced customer trust and brand loyalty. It examined specific methods such as sponsorships, social media, institutional partnerships, and mobile banking application features as key components of this digital distribution strategy. Research Design, Data, and Methodology: This study employed mixed methods design to assess digital distribution impacts. It involved 385 Jakarta bank customers. The sample size was determined using the Lemeshow formula. Results: The findings indicate that effective digital distribution strategies, including sponsorships, social media engagement, and user-friendly mobile banking applications, significantly enhance customer trust and loyalty. However, overly complex features may negatively impact loyalty. Conclusion: Thisstudy demonstrates a clear connection between the strategic use of digital marketing channels, such as sponsorships, social media, institutional partnerships, and mobile banking features, and the development of customer trust and loyalty. The results provide valuable insights to Indonesian banks in designing digital distribution strategies that prioritize building trust and fostering integrated customer interactions. Tailored digital marketing approachesthat optimize distribution can significantly enhance both trust and loyalty among Indonesian bank customers.

A Feature Point Extraction and Identification Technique for Immersive Contents Using Deep Learning (딥 러닝을 이용한 실감형 콘텐츠 특징점 추출 및 식별 방법)

  • Park, Byeongchan;Jang, Seyoung;Yoo, Injae;Lee, Jaechung;Kim, Seok-Yoon;Kim, Youngmo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.529-535
    • /
    • 2020
  • As the main technology of the 4th industrial revolution, immersive 360-degree video contents are drawing attention. The market size of immersive 360-degree video contents worldwide is projected to increase from $6.7 billion in 2018 to approximately $70 billion in 2020. However, most of the immersive 360-degree video contents are distributed through illegal distribution networks such as Webhard and Torrent, and the damage caused by illegal reproduction is increasing. Existing 2D video industry uses copyright filtering technology to prevent such illegal distribution. The technical difficulties dealing with immersive 360-degree videos arise in that they require ultra-high quality pictures and have the characteristics containing images captured by two or more cameras merged in one image, which results in the creation of distortion regions. There are also technical limitations such as an increase in the amount of feature point data due to the ultra-high definition and the processing speed requirement. These consideration makes it difficult to use the same 2D filtering technology for 360-degree videos. To solve this problem, this paper suggests a feature point extraction and identification technique that select object identification areas excluding regions with severe distortion, recognize objects using deep learning technology in the identification areas, extract feature points using the identified object information. Compared with the previously proposed method of extracting feature points using stitching area for immersive contents, the proposed technique shows excellent performance gain.

Forensic Decision of Median Filtering by Pixel Value's Gradients of Digital Image (디지털 영상의 픽셀값 경사도에 의한 미디언 필터링 포렌식 판정)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.79-84
    • /
    • 2015
  • In a distribution of digital image, there is a serious problem that is a distribution of the altered image by a forger. For the problem solution, this paper proposes a median filtering (MF) image forensic decision algorithm using a feature vector according to the pixel value's gradients. In the proposed algorithm, AR (Autoregressive) coefficients are computed from pixel value' gradients of original image then 1th~6th order coefficients to be six feature vector. And the reconstructed image is produced by the solution of Poisson's equation with the gradients. From the difference image between original and its reconstructed image, four feature vector (Average value, Max. value and the coordinate i,j of Max. value) is extracted. Subsequently, Two kinds of the feature vector combined to 10 Dim. feature vector that is used in the learning of a SVM (Support Vector Machine) classification for MF (Median Filtering) detector of the altered image. On the proposed algorithm of the median filtering detection, compare to MFR (Median Filter Residual) scheme that had the same 10 Dim. feature vectors, the performance is excellent at Unaltered, Averaging filtering ($3{\times}3$) and JPEG (QF=90) images, and less at Gaussian filtering ($3{\times}3$) image. However, in the measured performances of all items, AUC (Area Under Curve) by the sensitivity and 1-specificity is approached to 1. Thus, it is confirmed that the grade evaluation of the proposed algorithm is 'Excellent (A)'.

Understanding the Asymptotic Convergence of Domain of Attraction in Extreme Value Distribution for Establishing Baseline Distribution in Statistical Damage Assessment of a Structure (통계적 구조물 손상진단에서 기저분포 구성을 위한 극치분포의 점근적 수렴성 이해)

  • Kang, Joo-Sung;Park, Hyun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.231-242
    • /
    • 2009
  • The baseline distribution of a structure represents the statistical distribution of dynamic response feature from the healthy state of the structure. Generally, damage-sensitive dynamic response feature of a structure manifest themselves near the tail of a baseline statistical distribution. In this regard, some researchers have paid attention to extreme value distribution for modeling the tail of a baseline distribution. However, few researches have been conducted to theoretically understand the extreme value distribution from a perspective of statistical damage assessment. This study investigates the asymptotic convergence of domain of attraction in extreme value distribution through parameter estimation, which is needed for reliable statistical damage assessment. In particular, the asymptotic convergence of a domain of attraction is quantified with respect to the sample size out of which each extreme value is extracted. The effect of the sample size on false positive alarms in statistical damage assessment is quantitatively investigated as well. The validity of the proposed method is demonstrated through numerically simulated acceleration data on a two span continuous truss bridge.

A Feature-Based Retrieval Technique for Image Database (특징기반 영상 데이터베이스 검색 기법)

  • Kim, Bong-Gi;Oh, Hae-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2776-2785
    • /
    • 1998
  • An image retrieval system based on image content is a key issue for building and managing large multimedia database, such as art galleries and museums, trademarks and copyrights, and picture archiving and communication system. Therefore, the interest on the subject of content-based image retrieval has been greatly increased for the last few years. This paper proposes a feature-based image retrieval technique which uses a compound feature vector representing both of color and shape of an image. Color information for the feature vector is obtained using the algebraic moment of each pixel of an image based on the property of regional color distribution. Shape information for the feature vector is obtained using the Improved Moment Invariant(IMI) which reduces the quantity of computation and increases retrieval efficiency. In the preprocessing phase for extracting shape feature, we transform a color image into a gray image. Since we make use of the modified DCT algorithm, it is implemented easily and can extract contour in real time. As an experiment, we have compared our method with previous methods using a database consisting of 150 automobile images, and the results of the experiment have shown that our method has the better performance on retrieval effectiveness.

  • PDF