• Title/Summary/Keyword: Feature Acquisition

Search Result 167, Processing Time 0.026 seconds

Multimodality Image Registration and Fusion using Feature Extraction (특징 추출을 이용한 다중 영상 정합 및 융합 연구)

  • Woo, Sang-Keun;Kim, Jee-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.123-130
    • /
    • 2007
  • The aim of this study was to propose a fusion and registration method with heterogeneous small animal acquisition system in small animal in-vivo study. After an intravenous injection of $^{18}F$-FDG through tail vain and 60 min delay for uptake, mouse was placed on an acryl plate with fiducial markers that were made for fusion between small animal PET (microPET R4, Concorde Microsystems, Knoxville TN) and Discovery LS CT images. The acquired emission list-mode data was sorted to temporally framed sinograms and reconstructed using FORE rebining and 2D-OSEM algorithms without correction of attenuation and scatter. After PET imaging, CT images were acquired by mean of a clinical PET/CT with high-resolution mode. The microPET and CT images were fusion and co-registered using the fiducial markers and segmented lung region in both data sets to perform a point-based rigid co-registration. This method improves the quantitative accuracy and interpretation of the tracer.

  • PDF

Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function (클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단)

  • Park, Jang-Hwan;Lee, Dae-Jong;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.55-62
    • /
    • 2006
  • For the fault diagnosis of three-phase induction motors, we construct a experimental unit and then develop a diagnosis algorithm based on pattern recognition. The experimental unit consists of machinery module for induction motor drive and data acquisition module to obtain the fault signal. As the first step for diagnosis procedure, preprocessing is performed to make the acquired current simplified and normalized. To simplify the data, three-phase current is transformed into the magnitude of Concordia vector. As the next step, feature extraction is performed by kernel principal component analysis(KPCA) and linear discriminant analysis(LDA). Finally, we used the classifier based on radial basis function(RBF) network. To show the effectiveness, the proposed diagnostic system has been intensively tested with the various data acquired under different electrical and mechanical faults with varying load.

A Study on the Documentation Method of Theater (연극의 기록화 방법에 관한 연구)

  • Jung, Eun-Jin
    • The Korean Journal of Archival Studies
    • /
    • no.20
    • /
    • pp.115-150
    • /
    • 2009
  • Theater is a performing art with a volatile feature which exists when it is performed on the stage by actors and disappears when it is finished. Due to its intangible characteristic It is not only impossible to just hand it down but also there is a high possibility that materials which have been produced during the preparations of performance might be lost If it was not been properly taken care. The study which has been conducted from the existing such a problem, understand produceable records, the point where the records can be produced and the main body who is in charge of the production process by analysing performing process of theater and also propose the general method of documentation of theater by introducing the method of collecting each records. Such an introduction of method would help to progress acquisition activity by setting-up documentation planning at the stage of planning theater beforehand, rather than just help to gather the corresponding records after the performance is finished.

Image Denoising Via Structure-Aware Deep Convolutional Neural Networks (구조 인식 심층 합성곱 신경망 기반의 영상 잡음 제거)

  • Park, Gi-Tae;Son, Chang-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.85-95
    • /
    • 2018
  • With the popularity of smartphones, most peoples have been using mobile cameras to capture photographs. However, due to insufficient amount of lights in a low lighting condition, unwanted noises can be generated during image acquisition. To remove the noise, a method of using deep convolutional neural networks is introduced. However, this method still lacks the ability to describe textures and edges, even though it has made significant progress in terms of visual quality performance. Therefore, in this paper, the HOG (Histogram of Oriented Gradients) images that contain information about edge orientations are used. More specifically, a method of learning deep convolutional neural networks is proposed by stacking noise and HOG images into an input tensor. Experiment results confirm that the proposed method not only can obtain excellent result in visual quality evaluations, compared to conventional methods, but also enable textures and edges to be improved visually.

e-Passport Security Technology using Biometric Information Watermarking (바이오정보 워터마킹을 이용한 전자여권 보안기술)

  • Lee, Yong-Joon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.4
    • /
    • pp.115-124
    • /
    • 2011
  • There has been significant research in security technology such as e-passport standards, as e-passports have been introduced internationally. E-passports combine the latest security technologies such as smart card, public key infrastructure, and biometric recognition, so that these technologies can prevent unauthorized copies and counterfeits. Biometric information stored in e-passports is the most sensitive personal information, and it is expected to bring the highest risk of damages in case of its forgery or duplication. The present e-passport standards cannot handle security features that verify whether its biometric information is copied or not. In this paper, we propose an e-passport security technology in which biometric watermarking is used to prevent the copy of biometric information in the e-passport. The proposed method, biometric watermarking, embeds the invisible date of acquisition into the original data during the e-passport issuing process so that the human visual system cannot perceive its invisibly watermarked information. Then the biometric sample, having its unauthorized copy, is retrieved at the moment of reading the e-passport from the issuing database. The previous e-passport security technology placed an emphasis on both access control readers and anti-cloning chip features, and it is expected that the proposed feature, copy protection of biometric information, will be demanded as the cases of biometric recognition to verify personal identity information has increased.

Classification of Fall Crops Using Unmanned Aerial Vehicle Based Image and Support Vector Machine Model - Focusing on Idam-ri, Goesan-gun, Chungcheongbuk-do - (무인기 기반 영상과 SVM 모델을 이용한 가을수확 작물 분류 - 충북 괴산군 이담리 지역을 중심으로 -)

  • Jeong, Chan-Hee;Go, Seung-Hwan;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.57-69
    • /
    • 2022
  • Crop classification is very important for estimating crop yield and figuring out accurate cultivation area. The purpose of this study is to classify crops harvested in fall in Idam-ri, Goesan-gun, Chungcheongbuk-do by using unmanned aerial vehicle (UAV) images and support vector machine (SVM) model. The study proceeded in the order of image acquisition, variable extraction, model building, and evaluation. First, RGB and multispectral image were acquired on September 13, 2021. Independent variables which were applied to Farm-Map, consisted gray level co-occurrence matrix (GLCM)-based texture characteristics by using RGB images, and multispectral reflectance data. The crop classification model was built using texture characteristics and reflectance data, and finally, accuracy evaluation was performed using the error matrix. As a result of the study, the classification model consisted of four types to compare the classification accuracy according to the combination of independent variables. The result of four types of model analysis, recursive feature elimination (RFE) model showed the highest accuracy with an overall accuracy (OA) of 88.64%, Kappa coefficient of 0.84. UAV-based RGB and multispectral images effectively classified cabbage, rice and soybean when the SVM model was applied. The results of this study provided capacity usefully in classifying crops using single-period images. These technologies are expected to improve the accuracy and efficiency of crop cultivation area surveys by supplementing additional data learning, and to provide basic data for estimating crop yields.

Geometric and Semantic Improvement for Unbiased Scene Graph Generation

  • Ruhui Zhang;Pengcheng Xu;Kang Kang;You Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2643-2657
    • /
    • 2023
  • Scene graphs are structured representations that can clearly convey objects and the relationships between them, but are often heavily biased due to the highly skewed, long-tailed relational labeling in the dataset. Indeed, the visual world itself and its descriptions are biased. Therefore, Unbiased Scene Graph Generation (USGG) prefers to train models to eliminate long-tail effects as much as possible, rather than altering the dataset directly. To this end, we propose Geometric and Semantic Improvement (GSI) for USGG to mitigate this issue. First, to fully exploit the feature information in the images, geometric dimension and semantic dimension enhancement modules are designed. The geometric module is designed from the perspective that the position information between neighboring object pairs will affect each other, which can improve the recall rate of the overall relationship in the dataset. The semantic module further processes the embedded word vector, which can enhance the acquisition of semantic information. Then, to improve the recall rate of the tail data, the Class Balanced Seesaw Loss (CBSLoss) is designed for the tail data. The recall rate of the prediction is improved by penalizing the body or tail relations that are judged incorrectly in the dataset. The experimental findings demonstrate that the GSI method performs better than mainstream models in terms of the mean Recall@K (mR@K) metric in three tasks. The long-tailed imbalance in the Visual Genome 150 (VG150) dataset is addressed better using the GSI method than by most of the existing methods.

An Attention-based Temporal Network for Parkinson's Disease Severity Rating using Gait Signals

  • Huimin Wu;Yongcan Liu;Haozhe Yang;Zhongxiang Xie;Xianchao Chen;Mingzhi Wen;Aite Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2627-2642
    • /
    • 2023
  • Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.

A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection (입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구)

  • Lee, Jong-sik;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.147-168
    • /
    • 2017
  • There have been many studies on accurate stock market forecasting in academia for a long time, and now there are also various forecasting models using various techniques. Recently, many attempts have been made to predict the stock index using various machine learning methods including Deep Learning. Although the fundamental analysis and the technical analysis method are used for the analysis of the traditional stock investment transaction, the technical analysis method is more useful for the application of the short-term transaction prediction or statistical and mathematical techniques. Most of the studies that have been conducted using these technical indicators have studied the model of predicting stock prices by binary classification - rising or falling - of stock market fluctuations in the future market (usually next trading day). However, it is also true that this binary classification has many unfavorable aspects in predicting trends, identifying trading signals, or signaling portfolio rebalancing. In this study, we try to predict the stock index by expanding the stock index trend (upward trend, boxed, downward trend) to the multiple classification system in the existing binary index method. In order to solve this multi-classification problem, a technique such as Multinomial Logistic Regression Analysis (MLOGIT), Multiple Discriminant Analysis (MDA) or Artificial Neural Networks (ANN) we propose an optimization model using Genetic Algorithm as a wrapper for improving the performance of this model using Multi-classification Support Vector Machines (MSVM), which has proved to be superior in prediction performance. In particular, the proposed model named GA-MSVM is designed to maximize model performance by optimizing not only the kernel function parameters of MSVM, but also the optimal selection of input variables (feature selection) as well as instance selection. In order to verify the performance of the proposed model, we applied the proposed method to the real data. The results show that the proposed method is more effective than the conventional multivariate SVM, which has been known to show the best prediction performance up to now, as well as existing artificial intelligence / data mining techniques such as MDA, MLOGIT, CBR, and it is confirmed that the prediction performance is better than this. Especially, it has been confirmed that the 'instance selection' plays a very important role in predicting the stock index trend, and it is confirmed that the improvement effect of the model is more important than other factors. To verify the usefulness of GA-MSVM, we applied it to Korea's real KOSPI200 stock index trend forecast. Our research is primarily aimed at predicting trend segments to capture signal acquisition or short-term trend transition points. The experimental data set includes technical indicators such as the price and volatility index (2004 ~ 2017) and macroeconomic data (interest rate, exchange rate, S&P 500, etc.) of KOSPI200 stock index in Korea. Using a variety of statistical methods including one-way ANOVA and stepwise MDA, 15 indicators were selected as candidate independent variables. The dependent variable, trend classification, was classified into three states: 1 (upward trend), 0 (boxed), and -1 (downward trend). 70% of the total data for each class was used for training and the remaining 30% was used for verifying. To verify the performance of the proposed model, several comparative model experiments such as MDA, MLOGIT, CBR, ANN and MSVM were conducted. MSVM has adopted the One-Against-One (OAO) approach, which is known as the most accurate approach among the various MSVM approaches. Although there are some limitations, the final experimental results demonstrate that the proposed model, GA-MSVM, performs at a significantly higher level than all comparative models.

Design of Integrated Management System for Electronic Library Based on SaaS and Web Standard

  • Lee, Jong-Hoon;Min, Byung-Won;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.11 no.1
    • /
    • pp.41-51
    • /
    • 2015
  • Management systems for electronic library have been developed on the basis of Client/Server or ASP framework in domestic market for a long time. Therefore, both service provider and user suffer from their high cost and effort in management, maintenance, and repairing of software as well as hardware. Recently in addition, mobile devices like smartphone and tablet PC are frequently used as terminal devices to access computers through the Internet or other networks, sophisticatedly customized or personalized interface for n-screen service became more important issue these days. In this paper, we propose a new scheme of integrated management system for electronic library based on SaaS and Web Standard. We design and implement the proposed scheme applying Electronic Cabinet Guidelines for Web Standard and Universal Code System. Hosted application management style and software on demand style service models based on SaaS are basically applied to develop the management system. Moreover, a newly improved concept of duplication check algorithm in a hierarchical evaluation process is presented and a personalized interface based on web standard is applied to implement the system. Algorithms of duplication check for journal, volume/number, and paper are hierarchically presented with their logic flows. Total framework of our development obeys the standard feature of Electronic Cabinet Guidelines offered by Korea government so that we can accomplish standard of application software, quality improvement of total software, and reusability extension. Scope of our development includes core services of library automation system such as acquisition, list-up, loan-and-return, and their related services. We focus on interoperation compatibility between elementary sub-systems throughout complex network and structural features. Reanalyzing and standardizing each part of the system under the concept on the cloud of service, we construct an integrated development environment for generating, test, operation, and maintenance. Finally, performance analyses are performed about resource usability of server, memory amount used, and response time of server etc. As a result of measurements fulfilled over 5 times at different test points and using different data, the average response time is about 62.9 seconds for 100 clients, which takes about 0.629 seconds per client on the average. We can expect this result makes it possible to operate the system in real-time level proof. Resource usability and memory occupation are also good and moderate comparing to the conventional systems. As total verification tests, we present a simple proof to obey Electronic Cabinet Guidelines and a record of TTA authentication test for topics about SaaS maturity, performance, and application program features.