• 제목/요약/키워드: FeS-coated sand

검색결과 12건 처리시간 0.02초

철코팅 모래흡착제 제조 및 비소흡착 (Preparation of Iron-Coated Sand and Arsenic Adsorption)

  • 장윤영;김광섭;정재현;이승목;양재규;박준규
    • 대한환경공학회지
    • /
    • 제27권7호
    • /
    • pp.697-703
    • /
    • 2005
  • 본 연구에서는 주문진사 입경, 일차 및 이차 코팅온도, 코팅시간, 및 초기 3가철 주입농도를 변화시키면서 철을 코팅시킨 모래흡착제(Iron-Coated Sand, ICS)를 제조하였다. ICS 제조의 최적조건은 코팅효율, 코팅된 철의 안정성, 및 비소제거능 으로부터 선정하였다. 철코팅 효율은 입경이 작은 모래를 지지체로 사용하고 일차코팅온도를 높여주었을 때 뚜렷이 향상되었다. 철의 코팅효율은 이차코팅온도 및 코팅시간에는 크게 영향을 받지 않았지만 As(V) 흡착능은 이차코팅온도가 증가됨에 따라 크게 감소하는 것으로 나타났다. 이러한 결과들을 고려하여 ICS의 최적 이차코팅 조건을 $150^{\circ}C$ 온도조건과 1시간의 가열시간으로 선정하였다. Fe(III) 주입농도 변화에 따른 철 코팅효율은 0.8 Fe(III) mol/kg sand 될 때 까지는 뚜렷이 증가하였지만 그 이상에서는 큰 차이가 없었다. 기리고 Fe(III) 주입농도를 증가시킬수록 As(V) 흡착능도 증가하였으며 0.8 Fe(III) mol/kg sand 조건에서 최대값을 보여주었다. 이차 코팅온도 및 시간은 ICS 안정성의 주요변수로서 코팅온도를 높이고 코팅시간을 길게 할수록 ICS로 부터 용출되는 철의 양은 감소하였다. ICS에 대한 As(V)의 흡착은 낮은 pH에서 흡착량이 증가하는 전형적인 음이온형 흡착경향을 보여서 ICS는 강한 산성을 띄는 오염수내에 함유된 As(V)를 제거하는데 적용이 가능함을 알 수 있었다.

산화철 피복사에 의한 구리이온제거 (Removal of Copper Ion with Iron-Oxide-Coated Sand)

  • 곽명화;우성훈;김익성;박승조
    • 자원리싸이클링
    • /
    • 제9권1호
    • /
    • pp.70-75
    • /
    • 2000
  • 산화제 제조시 초기 과정에서 $Fe_3O_4$ 가 피복되었고 2 단계에서는 $Fe_3O_4$ 보다 첨착능이 우수한 것으로 알려져 있는 $Fe_3O_4$가 생성되었다. 산화제 폐염삼 30g/l에 5Cu mg/l를 첨가하여 20분간 반응하였을 경우 구리이온 제거효율은 74.8%이었다. 연속실험에서 최종 배출수중의 구리농도가 1mg/l이하를 파괴점으로 보았을 때 파괴점 도달시간은 23시간이었고 흡착용량은 0.87$\cdot$Cu/g$\cdot$IOCS이었다.

  • PDF

나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착 (Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand)

  • 이승열;강정천;박민지;양경희;정훈영
    • 한국광물학회지
    • /
    • 제25권4호
    • /
    • pp.185-195
    • /
    • 2012
  • 나노 크기 매킨나와이트(FeS)는 높은 환원력, 흡착성, 그리고 비표면적을 지니고 있어, 염소유기물의 분해와 중금속 및 비금속의 제거에 유용하다. 하지만 매킨나와이트 나노입자는 콜로이드 안정성(colloid stability)의 변화로 지하수 흐름에 따라 쉽게 확산되거나, 입자집적(particle aggregation)에 의해 대수층의 공극을 막을 수 있다. 따라서 투과반응벽(permeable reactive barrier)에 적용하기 위해서 적절한 공학적 변형이 필요하다. 본 연구에서는 코팅법을 적용해 나노크기 매킨나와이트를 변형시킴으로써 본래의 반응성을 유지하고 또한 경제적인 투과반응벽의 설치에 활용하고자 한다. 이를 위해 화학적 처리를 하지 않은 규사(non-treated silica sand, NTS)와 화학적 처리에 의해 불순물이 제거된 규사(chemically treated silica sand, CTS)를 사용해 매킨나와이트를 코팅시켰다. 두 규사 모두 약 pH 5.4에서 매킨나와이트가 최대로 코팅되었으며, 이 pH는 (1) 매킨나와이트의 용해도, (2) 규사 및 매킨나와이트의 표면전하(surface charge)에 의해 영향받았다. 최적 pH에서 NTS와 CTS에 의한 코팅량은 각각 0.101 mmol FeS/g, 0.043 mmol FeS/g으로, NTS 표면에 존재하는 산화철 등의 불순물에 의해 매킨나와이트의 코팅이 현저히 증가했다. 한편 혐기성 조건에서 코팅되지 않은 규사 2종과 최적 pH에서 코팅된 규사 2종을 이용해 아비산염(arsenite)의 흡착실험을 실시했다. pH 7에서 코팅되지 않은 NTS와 코팅된 NTS에 의한 아비산염의 상대적 제거율은 아비산염의 초기 농도에 따라 달라졌다. 낮은 농도에서 코팅되지 않은 NTS가 높은 아비산염의 제거율을 보였으나, 높은 농도에서는 코팅된 NTS가 상대적으로 높은 제거율을 보였다. 이런 차이는 아비산염은 낮은 농도에서 규사 표면에 존재하는 산화물과의 표면배위결합(surface complexation)에 의해 제거되었고, 높은 농도에서 코팅된 매킨나와이트와 반응해 황화비소(arsenic sulfides)로 침전되었기 때문이다. pH 7에서 코팅된 NTS에 비교해 코팅된 CTS는 현저히 낮은 아비산염 제거율을 보였는데, 이는 CTS의 상대적으로 낮은 매킨나와이트 코팅량에 기인했다. 따라서 코팅된 NTS는 코팅된 CTS보다 아비산염의 제거를 위한 투과반응벽의 설치에 더 적합한 물질이며, 특히 아비산염의 오염도가 심한 지하수의 복원에 유용하게 적용될 수 있다.

3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구 (Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent)

  • 김석준;김원기;이승목;양재규;이남희
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.541-548
    • /
    • 2009
  • 본 연구에서는 매립장 침출수 같은 중금속과 유기물을 함께 함유하고 있는 폐수를 처리하기위하여, Fe(III)을 활성탄, 모래, 불가사리와 같은 담체에 첨착 및 코팅시킨 흡착제를 사용하였다. 제조된 Iron Impregnated Activated Carbon(Fe-AC), Iron Coated Sand(ICS), Iron Coated Starfish(ICSF)는 EPA 3050B 방법을 통하여 각 매질에 함유된 철 함량을 분석하였으며, 회분식 반응조에서의 흡착실험을 통하여 각 흡착제의 Mn(II), Zn(II) 및 Cu(II)의 제거성능을 비교하였다. Fe-AC 및 ICS의 철 함유량은 각각 1,612 mg/kg 및 1,609 mg/kg으로서 매우 유사하였으며 ICSF의 철 함유량은 1,768 mg/kg으로 ICSF의 철 코팅함량이 다른 두 가지에 비해 150 mg/kg 정도 높게 나타났다. 회분식 실험에서의 Mn(II), Zn(II), Cu(II)의 제거효율은 ICSF, Fe-AC, ICS의 순으로 높은 제거율을 보였다. 각 흡착제를 단일 및 다중층으로 충전한 칼럼반응기에 의한 연속식 실험결과, 단일 흡착제에 비해 ICS, Fe-AC, ICSF의 순으로 충전한 시스템에서 높은 중금속 및 페놀제거효율을 나타내었으며, Cu(II)와 Zn(II)에 대해서는 뚜렷한 파과능을 보였으나 Mn(II) 제거율은 상대적으로 낮게 나타났다. 각 흡착제를 병합 충전한 다중층 칼럼반응시스템은 중금속 및 phenol제거에 효과적임을 알 수 있었다.

The Importance of Reaction Mechanisms in Interpreting the Arsenic Reactive Transport of FeS-coated Sand Column

  • Han, Young-Soo;Demond, Avery H.;Hayes, Kim F.
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권5호
    • /
    • pp.1-10
    • /
    • 2015
  • FeS, as a natural reduced iron mineral, has been recognized to be a viable reactive material for As(III) sequestration in natural and engineered systems. In this study, FeS-coated sand packed columns were tested to evaluate the As(III) removal capacities under anaerobic conditions at pH 5, 7 and 9. The column obtained As(III) removal capacity was then compared with the capacity result obtained from batch reactors. In the comparison, two different approaches were used. The first approach was used the total As(III) removal capacity which method was proved to be useful for interpreting pH 5 system. The second approach was used to consider sorption non-linearity and proved to be useful for interpreting the pH 9. The results demonstrated that a mechanistic understanding of the different removal processes at different pH conditions is important to interpret the column experimental results. At pH 5, where the precipitation of arsenic sulfide plays the major role in the removal of arsenic, the column shows a greater removal efficiency than the batch system due to the continuous dissolution of sulfide and precipitation of arsenic sulfide. At pH 9, where adsorption mainly governs the arsenic removal, the sorption nonlinearity should be considered in the estimation of the column capacity. This study highlighted the importance of understanding reaction mechanism to predict column performance using batch-obtained experimental results.

산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구 (Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide)

  • 김병권;민상윤;장윤영;양재규
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.473-482
    • /
    • 2009
  • 본 연구에서는 여러 몰비의 망간과 철을 함유한 용액을 사용하여 담체인 모래 표면에 이들 산화물들이 동시에 코팅된 산화철 및 산화망간 코팅사(IMCS)를 제조하였으며, X-선 회절분석을 통하여 제조한 IMCS 표면의 광물종 규명과 이들에 의한 As(III) 산화 및 As(V) 흡착능을 평가하였다. 망간과 철을 동시에 코팅한 IMCS들에서의 철 및 망간의 총량은 단일금속용액으로 코팅시킨 담체(ICS 혹은 MCS)에 비하여 감소하였지만 코팅된 철산화물은 goethite와 magnetite의 혼합물 그리고 망간 산화물은 ${\gamma}-MnO_2$로서 매우 유사하였다. IMCS에 의한 As(V) 흡착량은 코팅된 망간보다는 철 함량에 의해 크게 영향을 받았다. 그리고 IMCS에 의한 As(V) 흡착량은 1가 및 2가 이온들로 이루어진 이온세기 화학종으로 이온세기를 고정하였을 때에는 큰 영향을 받지 않았으나 $PO_4\;^{3-}$와 같은 3가 화학종을 사용한 경우에는 크게 억제되었다. 망간만 코팅시켜 얻은 MCS의 경우, NaCl 및 $NaNO_3$와 같은 1가 이온세기 화학종이 존재하는 경우는 $PO_4\;^{3-}$와 같은 3가 이온세기 화학종이 존재하는 경우에서 보다 2배 이상의 산화효율을 나타내었다. 이에 반해 망간과 철이 함께 코팅된 7:3, 5:5, 3:7 몰비의 경우에는 $PO_4\;^{3-}$를 이온세기 화학종으로 사용한 경우가 다른 이온세기 화학종이 존재하는 경우에서 보다 오히려 As(III) 산화력이 높게 나타났는데 이것은 $PO_4\;^{3-}$가 As(V)와 IMCS 표면에 대한 경쟁흡착을 함에 따른 결과로 나타났다.

알루미늄.철 산화물 동시피복모래에서 Bacillus subtilis의 부착: 산화음이온의 영향 (Attachment of Bacillus subtilis to Al-Fe Bimetallic Oxide-coated Sand : Effect of Oxyanions)

  • 박성직;이창구;한용운;박정안;김성배
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.515-520
    • /
    • 2009
  • 본 연구에서는 칼럼실험을 이용하여 알루미늄 철 산화물 동시피복모래에서 박테리아(Bacillus subtilis)의 부착에 산화음 이온(질산염, 탄산염, 인산염)이 미치는 영향을 조사하였다. 실험결과, 질산염의 경우 피복모래에서의 박테리아 부착은 질산염 이온의 농도변화와 무관하였다. 질산염의 농도가 변화함에 따라(0.1, 1, 10 mM) 질량회수율은 10.9${\pm}$0.2 %로 일정하였다. 탄산염의 경우 농도가 0.1 mM에서 1 mM로 증가함에 따라 질량회수율이 25.6%에서 39.0%로 증가하였고, 인산염의 경우에도 동일한 농도조건에서 50.9%에서 78.9%로 증가하였다. 이러한 현상은 박테리아 부착에 대한 탄산염과 인산염 이온의 방해효과 때문이었다. 반면, 탄산염/인산염의 농도가 1 mM에서 10 mM로 증가함에 따라 질량회수율이 각각 39.0%에서 23.8%로 78.9%에서 52.6%로 감소하였다. 이러한 현상은 탄산염/인산염의 농도증가에 따라 피복모래표면에 흡착되지 않고 수용액상에 존재하는 탄산염이나 인산염 이온이 이온강도를 증가시킴으로써 일어나는 박테리아 부착에 대한 증진효과 때문이었다. 본 실험조건에서 피복모래에서의 박테리아 부착에 미치는 영향은 인산염, 탄산염, 그리고 질산염 중, 인산염이 가장 큰 것으로 나타났다.

철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거 (Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides)

  • 임재우;장윤영;양재규
    • 대한환경공학회지
    • /
    • 제32권2호
    • /
    • pp.193-200
    • /
    • 2010
  • 복합 오염물질 처리를 위해 제조한 다기능성 흡착제인 철과 망간이 동시에 코팅된 모래(Iron and Manganese Coated Sand, IMCS)를 이용하여 용존 Mn(II) 처리 특성을 평가하였다. 실험에 사용된 IMCS는 0.05 M의 Mn(II)과 Fe(III) 용액을 pH 7에서 혼합하여 담체로 쓰인 모래에 코팅하여 제조하였다. IMCS는 ${\gamma}-MnO_2$ 형태의 Mn 산화물과 goethite 및 magnetite($F_{e3}O_4$) 형태의 철산화물이 동시에 존재하는 것으로 나타났다. Mn과 Fe의 함유량은 각각 826 및 1676 mg/kg으로 분석되었으며 $pH_{pzc}$는 6.40으로 측정되었다. IMCS와 산화제로서 NaOCl과 $KMnO_4$를 이용하여 Mn(II)의 제거에 관한 회분식 실험을 pH, 시간, 주입 농도를 변수로 하여 수행하였다. IMCS를 이용하여 Mn(II)을 처리하였을 때, pH 7.4에서 약 34%의 제거율을 나타내었고, 산화제인 NaOCl(13.6 mg/L)을 주입 후 IMCS와 반응시킨 결과 pH 7.0에서 96%의 제거율을 나타냈고, $KMnO_4$(4.8 mg/L)을 이용한 경우 pH 7.6에서 89%의 제거율을 나타내었다. IMCS와 산화제를 이용하여 Mn(II)을 제거할 경우, 용액의 pH가 증가함에 따라 제거율이 증가하는 양이온 형태의 제거 경향을 따랐으며, 반응 시간 6시간이 경과 후 거의 일정한 상태에 도달하는 것으로 나타났다. IMCS만을 이용하여 Mn(II)을 제거한 경우 833.3 mg/kg의 최대제거량을 나타냈고, 산화제로 NaOCl(13.6 mg/L), $KMnO_4$(4.8 mg/L)를 주입 후 IMCS와 반응시킨 경우 최대제거량은 각각 1428.6 및 1666.7 mg/kg으로 나타났다. IMCS에 의한 Mn(II)의 제거는 2차 반응속도식 및 Langmuir 식으로 잘 표현되었다.

$MnO_2$-코팅 모래흡착제 제조 및 As(III) 산화처리 적용 (Preparation of $MnO_2$-Coated Sand and Oxidation of As(III))

  • 정재현;양재규;송기훈;장윤영
    • 대한환경공학회지
    • /
    • 제28권1호
    • /
    • pp.54-60
    • /
    • 2006
  • 주문진사 및 석영사를 담체로 사용하여 코팅온도, 코팅시간, 및 초기 망간용액 주입농도를 변화시키면서 망간(IV)을 코팅시킨 모래흡착제($MnO_2$-Coated Sand, MCS)를 제조하였으며 As(III)의 산화효율을 비교하였다. MCS 제조의 최적조건은 코팅효율 및 As(III) 산화능으로 부터 선정하였다. 망간 코팅효율은 코팅시간에는 크게 영향을 받지 않았지만 코팅온도가 증가함에 따라 증가하였다. 반면 As(III)의 산화능은 코팅온도가 증가됨에 따라 크게 감소하여 나타났다. 이러한 결과들을 고려하여 MCS의 최적 코팅 조건을 $150^{\circ}C$ 온도조건과 1시간의 가열시간으로 선정할 수 있었다. Mn(II) 주입농도가 늘어남에 따라 망간 코팅효율은 뚜렷이 증가하였지만 As(III)의 산화능은 0.8 Mn(II) mol/kg sand 조건에서 최대값을 보여주었다. MCS로 부터의 망간의 용출은 pH가 감소함에 따라 크게 증가하여 나타났다. 최적 조건에서 제조한 MCS를 사용하여 As(III)의 산화반응 특성을 회분식 실험을 통하여 조사한 결과, MCS의 As(III) 산화특성은 MCS의 농도에 대하여 비례적인 반응속도를 보여주었으며 pH가 감소할수록 As(III)의 산화속도가 증가하였다.

철과 망간이 동시에 코팅된 반응성 매질을 이용한 용존 Fe(II) 제거 (Removal of Soluble Fe(II) using Reactive Media Coated with both Fe and Mn)

  • 민상윤;장윤영;양재규
    • 대한환경공학회지
    • /
    • 제33권2호
    • /
    • pp.85-92
    • /
    • 2011
  • 본 연구에서는 산화망간과 산화철이 단독 및 복합 코팅된 반응성매질인 망간코팅사(MCS), 철코팅사(ICS) 그리고 철-망간코팅사(IMCS)를 이용하여 용존 Fe(II)의 산화 및 제거능을 평가하였다. 반응성매질에 $KMnO_4$와 NaOCl를 추가적인 산화제로 이용하였을 때의 Fe(II) 제거능을 반응용액의 pH, 반응시간, Fe(II) 농도변화에 따라 조사하였다. 반응성매질 및 추가적인 산화제 없이 Fe(II) 용액만을 사용한 경우, pH 5 이하에서는 Fe(II)의 느린 산화에 의해 제거율이 낮았으나 이후에는 빠른 산화 및 침전반응에 의해 제거율이 증가하였다. ICS만을 사용하였을 때 ICS 표면에 의한 Fe(II)의 제거는 극히 제한적인 것으로 나타났다. 망간 산화물이 코팅된 IMCS와 MCS를 사용한 경우 낮은 pH에서도 Fe(II)가 산화망간에 의해 산화되었으며 용액으로부터 효과적으로 제거되는 것으로 나타났다. Fe(II)는 IMCS만 단독으로 사용했을 때와 NaOCl을 산화제로 사용했을 때 제거율에서 큰 차이가 나지 않았다. IMCS와 산화제를 이용하여 Fe(II)을 제거할 경우, 용액의 pH가 증가함에 따라 이들의 산화능이 증가하였고 이로써 전체 제거율의 증가를 가져왔다. Fe(II)의 제거에 관한 반응속도 실험결과 유사-1차 반응 보다는 유사-2차 반응식으로 더 잘 표현되었으며 $KMnO_4$를 추가적인 산화제로 이용한 경우 Fe(II)는 14,286 mg/kg hr의 높은 초기 제거율(h)을 보였다. $KMnO_4$ 주입 시 반응시간 10분 안에 제거평형에 도달하였고 NaOCl의 경우는 6시간 후에 거의 제거평형에 도달하는 것으로 나타났다. IMCS에 의한 Fe(II)의 최대 제거량 값을 구하기 위해 pH 4에서 Langmuir 등온식에 적용한 결과 1,088 mg/kg의 제거량을 보였다.