• Title/Summary/Keyword: FeCoSiB amorphous film

Search Result 13, Processing Time 0.028 seconds

Magnetic Properties of FeCoSiB Amorphous Films Annealed in Magnetic field (자계중 열처리된 FeCoSiB 아몰퍼스박막의 자기적 특성)

  • 신광호;김영학;사공건
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1305-1309
    • /
    • 2003
  • To utilize FeCoSiB amorphous films for magnetoelastic sensors, the temperature dependency of magnetization (M-T curve) and the magnetization properties of the amorphous films were investigated in this study. As the amount of cobalt In the films increased, the Curie temperature decreased but the crystallization temperature increased. In addition to this, the crystallization temperature was lower than the Curie temperature in the film containing 20 at% cobalt. The optimized annealing condition was set up by analyzing the H-T curve. And then, the amorphous film that has excellent magnetic properties and uni-axal anisotropy could be prepared for construction of the magnetoelastic sensor devices. The coercive force of the film was below 0.5 Oe and the anisotripic field was about 5 Oe.

High Density MRAM Device Technology Based on Magnetic Tunnel Junctions (자기터널접합을 활용한 고집적 MRAM 소자 기술)

  • Chun, Byong-Sun;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • Ferromagnetic amorphous $Ni_{16}Fe_{62}Si_8B_{14}$ and $Co_{70.5}Fe_{4.5}Si_{15}B_{10}$ layers have been devised and incorporated as free layers of magnetic tunnel junctions (MTJs) to improve MRAM reading and writing performance. The NiFeSiB and CoFeSiB single-layer film exhibited a lower saturation magnetization ($Ms=800emu/cm^3,\;and\;560emu/cm^3$, respectively) compared to that of a $Co_{90}Fe_{10}(Ms=1400emu/cm^3)$. Because amorphous ferromagnetic materials have lower Ms than crystalline ones, the MTJs incorporating amorphous ferromagnetic materials offer lower switching field ($H_{sw}$) values than that of the traditional CoFe-based MTJ. The double-barrier MTJ with an amorphous NiFeSiB free layer offered smooth surface resulting in low bias voltage dependence, and high $V_h\;and\;V_{bd}$ compared with the values of the traditional CoFe-based MTJ.

Magneto-Impedance Effect of FeCoSiB Amorphous Magnetic Films (FeCoSiB계 아몰퍼스 자성박막의 자기-임피 던스 효과)

  • Shin, Yong-Jin;Soh, Dae-Hwa;Kim, Hyen-Wook;Kim, Dae-Ju;Seo, Kang-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.3
    • /
    • pp.252-255
    • /
    • 1998
  • In this paper, we investigate the magneto-impedance(M1) effect of the FeCoSiB amorphous magnktic films. The amorphous magnetic film having near zero magnetostriction is fabricated by using the sputtering method, and then annealed in magnetic field. When the external magnetic field is directly applied to the fabricated film, the voltage amplitude between both side of the magnetic film varies about 76.2% at 120[MHzl and the impedance varies about 2.1%/0e. Thus, we find that the fabricated magnetic film has the characteristics of good sensor element.

  • PDF

Effects of heat treatment and Co addition on the magnetic properties of FeCoBSi thin film (FeCoSiB 자성박막의 자기적 특성에 미치는 Co 및 열처리의 영향)

  • 신현수;양성훈;장태석;박종완
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.389-393
    • /
    • 2000
  • Effects of Co addition and heat treatment on the magnetic properties of Fe-Si-B thin films were investigated. The compositions of metalloids, i.e, B and Si, in the alloys were kept 10 at.% each. Heat treatments were carried out in the temperature range from 100 to $300^{\circ}C$ for up to 60 min. Amorphous thin films of FeCoSiB were deposited on the water-cooled substrates by dc magnetron sputtering. The composition of thin films was controlled by placing proper number of pellets of alloying elements and analyzed by ICP, resulting in $Fe_{80-X}Co_ XB_{10}Si_{10}$ (X=8~18 at.%). Saturation magnetization of the alloys increased as Co concentration increased up to 10 at.% and then decreased with further increase of Co concentration. However, coercive force of the films decreased with the increase of Co concentration. Furthermore, the coercive force was also reduced by the annealing due to the residual stress relief.

  • PDF

Frequency Dependance of Inductance of FeCoB Amorphous Magnetic Films (FeCoB계 아몰퍼스 자성박막의 인덕턴스의 주파수 의존성)

  • 신용진;소대화;김현욱;서강수;임재근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.5
    • /
    • pp.413-417
    • /
    • 1998
  • In this paper, we investigate frequency dependance of inductance of FeCoB amorphous magnetic films. $(Fe_{1-x}Co_x)_{79}Si_2B_{19}$ was used as the basic composition of amorphous magnetic film having near zero magnetostriction. The amorphous magnetic films were fabricated with x=0.94 and x=0.95 by using sputtering method at high frequency. The films were anneald under non-magnetic field and near crystallization temperatures(30min at $280^{\circ}C$, 30min and 1hr at $400^{\circ}C$, respectively). As the results of the experiments with the fabricated films, the lowest coercive force was 0.084[Oe] at 400[W] of the input power and the crystallization temperature was $360^{\circ}C$ . In the case 30min at 40$0^{\circ}C$ the inductance value in the low frequency with x=0.95 was higher by 488% than that with x=0.94. The quality factor Q was below 0.7 for all samples. We obtained the highest quality value at 400[KHz] with 30min at $280^{\circ}C$ and x=0.94. The value was about 0.62. Also, the quality factor value was about 0.35 at 1[MHz] with 30min at $280^{\circ}C$ and x=0.95.

  • PDF

Effect of Surfactant in Electroless Ni-B Plating for Coating on the Diamond Powder (다이아몬드 분말상에 무전해 Ni-B 도금을 위한 계면활성제의 영향)

  • Yang, Changyol;Yu, Si-Young;Moon, Hwan-Gyun;Lee, Jung-Ho;Yoo, Bongyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.3
    • /
    • pp.177-182
    • /
    • 2017
  • The properties of electroless Ni-B thin film on diamond powder with different parameters (temperature, pH, surfactant etc.) were studied. The surface morphology, structure and composition distribution of the Ni-B film were observed by field effect scanning electron microscope (FE-SEM), energy-dispersive spectrometer (EDS), X-ray diffraction (XRD) and Auger electron spectroscopy (AES). The growth rate of Ni-B film was increased with increase of bath temperature. The B content in Ni-B film was reduced with increase of bath pH. As a result the structure of Ni-B film was changed from amorphous to crystalline structure. The PVP in solution plays multi-functional roles as a dispersant and a stabilizer. The Ni-B film deposited with adding 0.1 mM-PVP was strongly introduced an amorphous structure with higher B content (25 at.%). Also the crystallite size of Ni-B film was reduced from 12.7 nm to 5.4 nm.

Preparation and Magnetic Properties of Co-system Amorphous Thin Film by the Sputter method (스파터법에 의한 Co-계 비정질박막의 제작과 자기특성)

  • 임재근;문현욱;서강수;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.190-191
    • /
    • 1994
  • In this paper, We study on the fabrication of amorphous this film of zeromagnetostriction material and the magnetic properties. This films are fabricated by using sputtering method with input power of 400∼607[W], Ar gas pressure of 3∼ 9[mTorr] and target composition of Fe$\sub$4.7/ Co$\sub$74.3/Si$_2$B$\sub$19/. Sample this films with diameter of 14[mm ] and thickness of 27-30[$\mu\textrm{m}$] were obtained through experiments. When we analyzed the magnetic properties before and after annealing with sample thin films, we confirmed that magnetic domain wall amorphous thin films consisted for Neel magnetic domain wall with the width of about 1[$\mu\textrm{m}$].

Anisotropy Control of Highly Magnetostrictive Films by Bias Stress (바이어스 응력에 의한 고자왜 아몰퍼스 박막의 자기이방성 제어)

  • Shin, Kwang-Ho;Kim, Young-Hak;Park, Kyung-Il;Sa-Gong, Geon
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.193-197
    • /
    • 2003
  • To materialize the magnetoelastic devices, such as a highly functional sensor and a signal processing device, using the Fe base amorphous film which has both excellent soft magnetic and magnetostrictive properties, in this study, a new method to control the magnetic anisotropy of a highly magnetostrictive film using bias stress has been proposed and tested. The film pattern, which was stressed by its substrate bending, was subjected to annealing for relieving its stress. Successively, the compressive stress occurred by flattening the substrate was formed in the pattern. With the introduction of the residual compressive stress, the magnetization of the film pattern was aligned in the transverse direction through magnetoelasic coupling. The magnetic domain structure and magnetization curve of the film pattern of which magnetic anisotropy was controlled by the proposed method were presented to verify the availability of the method.

Inducdance Effects of Zeromagnetostrictive Amorphous Magnetic Films. (영자왜 마몰퍼스 자성박막의 인덕턴스효과)

  • 서강수;임재근;정승우;신용진
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.136-139
    • /
    • 1997
  • In this paper, we inveatigate frequency dependance of inductance effects of FeCoB amorphous magnetic films. First, amorphous magnetic film having near zero magnetostriction is the basic composition of (Fe$_{1-x}$ / $Co_{x}$)$_{79}$Si$_2$B$_{19}$ with x=0.94, 0.95 and in order to decrease magnetio . anisotropy, the film was annealed in 28$0^{\circ}C$/30min, 40$0^{\circ}C$/30min, 40$0^{\circ}C$/1hr with near crystallization temperature under non-magnetic field. As result of investigation, in case of x=7.95 than x=0.94, we could have obtained high values, which inductance ratios in the low frequency was 488%. And Quality factor Q was under 0.7 in all sample, in case of annealed in 28$0^{\circ}C$/30min, we could have obtained highest value, which x=0.9fl is about 0.62 in 400[kHz], and in case of x=0.95 was about 0.35 in 1[MHz].z].].

  • PDF

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF