• 제목/요약/키워드: FeCo nanoparticles

검색결과 113건 처리시간 0.022초

Immobilization and Performance of Penicillin G Acylase on Magnetic Ni0.7Co0.3Fe2O4@SiO2-CHO Nanocomposites

  • Lv, Zhixiang;Yu, Qingmei;Wang, Zhou;Liu, Ruijiang
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권6호
    • /
    • pp.913-922
    • /
    • 2019
  • Magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4$ nanoparticles that were prepared via the rapid combustion process were functionalized and modified to obtain magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites, on which penicillin G acylase (PGA) was covalently immobilized. Selections of immobilization concentration and time of fixation were explored. Catalytic performance of immobilized PGA was characterized. The free PGA had greatest activity at pH 8.0 and $45^{\circ}C$ while immobilized PGA's activities peaked at pH 7.5 and $45^{\circ}C$. Immobilized PGA had better thermal stability than free PGA at the range of $30-50^{\circ}C$ for different time intervals. The activity of free PGA would be 0 and that of immobilized PGA still retained some activities at $60^{\circ}C$ after 2 h. $V_{max}$ and $K_m$ of immobilized PGA were 1.55 mol/min and 0.15 mol/l, respectively. Free PGA's $V_{max}$ and $K_m$ separately were 0.74 mol/min and 0.028 mol/l. Immobilized PGA displayed more than 50% activity after 10 successive cycles. We concluded that immobilized PGA with magnetic $Ni_{0.7}Co_{0.3}Fe_2O_4@SiO_2-CHO$ nanocomposites could become a novel example for the immobilization of other amidohydrolases.

Skin Corrosion and Irritation Test of Nanoparticles Using Reconstructed Three-Dimensional Human Skin Model, EpiDermTM

  • Kim, Hyejin;Choi, Jonghye;Lee, Handule;Park, Juyoung;Yoon, Byung-Il;Jin, Seon Mi;Park, Kwangsik
    • Toxicological Research
    • /
    • 제32권4호
    • /
    • pp.311-316
    • /
    • 2016
  • Effects of nanoparticles (NPs) on skin corrosion and irritation using three-dimensional human skin models were investigated based on the test guidelines of Organization for Economic Co-operation and Development (OECD TG431 and TG439). EpiDerm$^{TM}$ skin was incubated with NPs including those harboring iron (FeNPs), aluminum oxide (AlNPs), titanium oxide (TNPs), and silver (AgNPs) for a defined time according to the test guidelines. Cell viabilities of EpiDerm$^{TM}$ skins were measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide based method. FeNPs, AlNPs, TNPs, and AgNPs were non-corrosive because the viability was more than 50% after 3 min exposure and more than 15% after 60 min exposure, which are the non-corrosive criteria. All NPs were also non-irritants, based on viability exceeding 50% after 60 min exposure and 42 hr post-incubation. Release of interleukin 1-alpha and histopathological analysis supported the cell viability results. These findings suggest that FeNPs, AlNPs, TNPs, and AgNPs are 'non-corrosive' and 'non-irritant' to human skin by a globally harmonized classification system.

두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조 (Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure)

  • 유리;김유진;피재환;김경자
    • 한국분말재료학회지
    • /
    • 제17권3호
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구 (Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver)

  • 주소영;안낙균;이찬기;윤진호
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

세포독성 평가를 통한 γ-Fe2O3 나노입자의 생체안정성 및 약물전달효율 (Biostability and Drug Delivery Efficiency of γ-Fe2O3 Nano-particles by Cytotoxicity Evaluation)

  • 이권재;안정희;신재수;김동희;유화승;조종관
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.132-136
    • /
    • 2010
  • This study examined the biostability and drug delivery efficiency of g-$Fe_2O_3$ magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and $771\;cm^1$. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.

다공성 Co3O4/RuO2 복합체 합성 및 전기화학적 특성 (Synthesis and Electrochemical Characterization of Porous Co3O4/RuO2 Composite)

  • 임혜민;류광선
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.118-122
    • /
    • 2012
  • We synthesized porous $Co_3O_4/RuO_2$ composite using the soft template method. Cetyl trimethyl ammonium bromide (CTAB) was used to make micell as a cation surfactant. The precipitation of cobalt ion and ruthenium ion for making porosity in particles was induced by $OH^-$ ion. The porous $Co_3O_4/RuO_2$ composite was completely synthesiszed after anealing until $250^{\circ}C$ at $3^{\circ}C$/min. From the XRD ananysis, we were able to determine that the porous $Co_3O_4$/RuO2 composite was comprised of nanoparticles with low crystallinity. The shape or structure of the porous $Co_3O_4/RuO_2$ composite was studied by FE-SEM and FE-TEM. The size of the porous $Co_3O_4/RuO_2$ composite was 20~40 nm. From the FE-TEM, we were able to determine that porous cavities were formed in the composite particles. The electrochemical performance of the porous $Co_3O_4/RuO_2$ composite was measured by CV and charge-discharge methods. The specific capacitances, determined through cyclic voltammetry (CV) measurement, were ~51, ~47, ~42, and ~33 F/g at 5, 10, 20, and 50 mV/sec scan rates, respectively. The specific capacitance through charge-discharge measurement was ~63 F/g in the range of 0.0~1.0 V cutoff voltage and 50 mAh/g current density.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

다양한 독성법을 이용한 중금속, 나노입자 및 금속오염 토양 평가 (Bioassessment of Heavy Metals, Nanoparticles, and Soils Contaminated with Metals using Various Bioassays)

  • 공인철;석우도;이민경;강일모
    • 자원환경지질
    • /
    • 제48권3호
    • /
    • pp.261-271
    • /
    • 2015
  • 본 총설 논문에서는 다양한 급성독성법을 이용하여 중금속, 나노입자, 중금속 오염 토양에 의한 영향 평가 결과를 소개하였다. 평가는 씨앗발아, 생물발광, 효소활성 및 유전자 변이 평가법을 이용하였으며, 오염물 종류 및 방법에 따라 상이한 민감도를 보였다. 씨앗의 경우에는 상추(Lactucus)와 알타리무(Raphanus)가 대체적으로 높은 민감도를 보였다. 단일 금속 노출에서는 일반적으로 As(III)가 높은 독성을 나타내었다. As(III) 1 mg/L 조건에서 높은 유전자변이(MR=5.1)가 관찰되었다. 혼합 중금속에 대한 영향은 명확한 경향을 찾기 어려웠지만, 씨앗 발아의 경우에는 상승 효과가 보편적으로 관찰되었다. 중금속 오염 토양에 대한 평가에서는 시료별 총중금속 농도와 독성 영향 간의 상관성을 예측하기는 어려웠다. 일반적으로 나노입자의 씨앗발아에 근거한 영향은 다음의 순서로 조사되었다: CuO > ZnO > NiO > $TiO_2$, $Fe_2O_3$, $Co_3O_4$. 특히 $TiO_2$, $Fe_2O_3$$Co_3O_4$는 최대 노출 농도 1,000 mg/L 농도에서도 뚜렷한 영향을 나타내지 않았다. 다양한 독성 생물검정법에 대한 통합 자료는 향후 다양한 오염물 기초 독성평가에 유용하게 사용할 수 있을 것이다.