DOI QR코드

DOI QR Code

Bioassessment of Heavy Metals, Nanoparticles, and Soils Contaminated with Metals using Various Bioassays

다양한 독성법을 이용한 중금속, 나노입자 및 금속오염 토양 평가

  • Kong, In Chul (Department of Environmental Engineerting, Yeungnam University) ;
  • Shi, Yu Tal (Department of Environmental Engineerting, Yeungnam University) ;
  • Lee, Min Kyung (Department of Environmental Engineerting, Yeungnam University) ;
  • Kang, Il Mo (Mineral Resources Division, Korea Institute of Geoscience & Mineral Resources (KIGAM))
  • 공인철 (영남대학교 환경공학과) ;
  • 석우도 (영남대학교 환경공학과) ;
  • 이민경 (영남대학교 환경공학과) ;
  • 강일모 (한국지질자원연구원 광물 자원연구본부)
  • Received : 2015.06.23
  • Accepted : 2015.07.01
  • Published : 2015.06.28

Abstract

Toxicity results of metals, nanoparticles (NPs), and soils contaminated with metals were introduced on this review. Following methods were used: seed germination, bioluminescence, enzyme activity, and mutation. In general, different sensitivities were observed, depending on types of bioassays and pollutants. Among tested seeds, sensitivities of Lactucus and Raphanus were greater than others. Of single metal exposure, effect by As(III) was greater than others, and high revertant mutation ratio (5.1) was observed at 1 mg/L arsenite, indicating high mutagenicity. No general pattern was observed on the effect of metal mixture, but synergistic effect was observed with seeds. In case of soils, no correlation was observed between total metal contents and toxicity. Toxicity of NPs was observed as follows: CuO > ZnO > NiO > $TiO_2$, $Fe_2O_3$, $Co_3O_4$. Especially, no considerable effects were observed by $TiO_2$, $Fe_2O_3$, and $Co_3O_4$ under tested concentration (max. 1,000 mg/L). The evaluation results of interactive toxic effects using various bioassays may comprise a useful tool for the bioassessment of various environmental pollutants.

본 총설 논문에서는 다양한 급성독성법을 이용하여 중금속, 나노입자, 중금속 오염 토양에 의한 영향 평가 결과를 소개하였다. 평가는 씨앗발아, 생물발광, 효소활성 및 유전자 변이 평가법을 이용하였으며, 오염물 종류 및 방법에 따라 상이한 민감도를 보였다. 씨앗의 경우에는 상추(Lactucus)와 알타리무(Raphanus)가 대체적으로 높은 민감도를 보였다. 단일 금속 노출에서는 일반적으로 As(III)가 높은 독성을 나타내었다. As(III) 1 mg/L 조건에서 높은 유전자변이(MR=5.1)가 관찰되었다. 혼합 중금속에 대한 영향은 명확한 경향을 찾기 어려웠지만, 씨앗 발아의 경우에는 상승 효과가 보편적으로 관찰되었다. 중금속 오염 토양에 대한 평가에서는 시료별 총중금속 농도와 독성 영향 간의 상관성을 예측하기는 어려웠다. 일반적으로 나노입자의 씨앗발아에 근거한 영향은 다음의 순서로 조사되었다: CuO > ZnO > NiO > $TiO_2$, $Fe_2O_3$, $Co_3O_4$. 특히 $TiO_2$, $Fe_2O_3$$Co_3O_4$는 최대 노출 농도 1,000 mg/L 농도에서도 뚜렷한 영향을 나타내지 않았다. 다양한 독성 생물검정법에 대한 통합 자료는 향후 다양한 오염물 기초 독성평가에 유용하게 사용할 수 있을 것이다.

Keywords

References

  1. 공인철, 권효정, 고경석 (2010) 다양한 생물 검정법에 근거한 비소의 위해성 평가 비교. 대한환경공학회지. 32(8), 795-801.
  2. 공인철, 이소라 (2012) 씨앗발아 시험에 근거한 단일 및 혼합 중금속과 오염토양의 독성평가. 한국폐기물자원환경학회지. 29(6), 527-533.
  3. 구본우, 공인철 (2014) 씨앗발아 및 발아지수에 근거한 나노입자 독성평가. 대한환경공학회지. 36(6), 396-401. https://doi.org/10.4491/KSEE.2014.36.6.396
  4. 이진수, Klinck, B., 전효택 (2001) 비소 및 독성중금속들의 인체위해성 평가 모델 링. 한국자원공학회지, 38(2), 136-145.
  5. 이종삼, 김용진, 한상국 (2007) Ames test를 이용한 소각 잔사 혼입 매립지 침출수 처리공정수의 돌연변이원성 평가. 한국폐기물학회지. 24(3), 211-218.
  6. Abedin, M.D.J. and Meharg, A.A. (2002) Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil, v.243, p.57-66. https://doi.org/10.1023/A:1019918100451
  7. An, Y.J. (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, v.127, p.21-26. https://doi.org/10.1016/S0269-7491(03)00263-X
  8. Aposhian, H.V. and Aposhian, M.M. (2006) Arsenic toxicology: five questions. Chemistry Research Toxicology, v.19, p.1-15. https://doi.org/10.1021/tx050106d
  9. Bitton, G. (1999) Wasterwater Microbiology, 2nd ed., Wiley-Liss, Inc.
  10. Biswas, P. and Wu, C.Y. (2005) Critical review: nanoparticles and the environment. J. Air Waste Management Association, v.55, p.708-746. https://doi.org/10.1080/10473289.2005.10464656
  11. Chang, K.N., Lee, T. C., Tam, M.F. and Chen, Y.C. (2003) Identification of falectine and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells. Biochemistry, v.371, p.495-503. https://doi.org/10.1042/bj20021354
  12. Fairbrother, A., Wenstel, R., Sappington, K. and Wood, W. (2007) Framework for metals risk assessment. Ecotoxicology and Environmental Safety, v.68, p.145-227. https://doi.org/10.1016/j.ecoenv.2007.03.015
  13. Gonzalez, L., Lison, D. and Kirsch-Volders, M. (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology, v.2, p.252-273. https://doi.org/10.1080/17435390802464986
  14. Gupta, G. and Karuppiah, M. (1996) Toxicity study of a Chesapeake bay tributary-Wicomico river. Chemosphere, v.32, p.1193-1215. https://doi.org/10.1016/0045-6535(96)00034-3
  15. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J. and Lead, J.R. (2008) Nanomaterials in the environment; behaviour, fate, bioavailability, and effects. Environment Toxicology Chemistry, v.27, p.185-1851.
  16. Ko, K-S., Han, J. and Kong, I.C. (2013) Assessment of arsenite, arsenate, and chromate phytotoxicity based on the activity of seed germination and growth (root & shoot) of various plant seeds. Human Ecology Risk Ass., v.19, p.742-753. https://doi.org/10.1080/10807039.2012.708273
  17. Kungolos, A., Emmanouil, C., Tsiridis, V. and Tsiropoulos, N. (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Science of the Total Environment, v.407, p.4610-4615. https://doi.org/10.1016/j.scitotenv.2009.04.038
  18. Landsiedel, R., Kapp, M.D., Schulz, M., Wiench, K. and Oesch, F. (2009) Genotoxicity investigations on nanomaterials: Methods, preparation and characterilization of test material, potential artifacts and limitations-Many questions, some answers. Mutation Reserch, v.681, p.241-258. https://doi.org/10.1016/j.mrrev.2008.10.002
  19. Lin, D. and Xing, B. (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environment Pollution, v.150, p.243-250. https://doi.org/10.1016/j.envpol.2007.01.016
  20. Liu, X., Zhang, S., Shan, X. and Zhu, Y-G. (2005) Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere, v.61, p.293-301. https://doi.org/10.1016/j.chemosphere.2005.01.088
  21. Lowry, G.L., Gregory, K.B., Apte, S.C. and Lead, J.R. (2012) Transformations of nanomaterials in the environment. Environ. Science Technology, v.46, p.6893-6899. https://doi.org/10.1021/es300839e
  22. Mankiewicz-Boczek, J., Nalecz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M. and Sawicki, J. (2008) Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, v.71, p.830-836. https://doi.org/10.1016/j.ecoenv.2008.02.023
  23. Mathur, N., Bhatnagara, P., Mohanb, K., Bakrea, P., Nagarc, P. and Bijarniac, M. (2007) Mutagenicity evaluation of industrial sludge from common effluent treatment plant. Chemisphere, v.67, p.1229-1235. https://doi.org/10.1016/j.chemosphere.2006.10.073
  24. Mortelmans, K. and Zeiger, E. (2000) The Ames Salmonella/microsome mutagenicity assay. Mutation Reserch, v.455, p.29-60. https://doi.org/10.1016/S0027-5107(00)00064-6
  25. Sharma, V.K. and Sohn, M. (2009) Aqautic arsenic: Toxicity, speciation, transformations, and remediation. Environment Internationl, v.35, p.743-759.
  26. Singh, N., Manshian, B., Jenkins, G.J.S., Griffiths, S.M., Williams, P.M., Maffeis, T.G.G., Wright, C.J. and Doak, S.H. (2009) NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials, v.30, p.3891-3914. https://doi.org/10.1016/j.biomaterials.2009.04.009
  27. Suzuki, N., Naranmandura, H., Hirano, S. and Suzuki, L.T. (2008) Theoretical calculations and reaction analysis on the interaction of pentavelent thioarsenicals with biorelevant thiol compounds. Chemistry Resarch Toxicology, v.21, p.550-553. https://doi.org/10.1021/tx700346z
  28. US. EPA. (1996) Ecological Effects Test Guidelines-seed germination/root elongation toxicity test, EPA 712-C-96-154.
  29. Wu, S.G., Huang, L., Head, J., Chen, D-R., Kong, I.C. and Tang, Y. (2012) Phytotoxicity of metal oxide nanoparticles in related to both dissolved and metal ions and adsorption of particles on seed surfaces. J. Petroleum Environ. Biotechnol., v.3, n.4, p.2-5.