• Title/Summary/Keyword: Fe-based metallic glass

Search Result 12, Processing Time 0.023 seconds

Fe-Based Nano-Structured Powder Reinforced Zr-Based Bulk Metallic Glass Composites by Powder Consolidation

  • Cho, Seung-Mok;Han, Jun-Hyun;Lee, Jin-Kyu;Kim, Yu-Chan
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.504-509
    • /
    • 2009
  • The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Artificial Neural Network Supported Prediction of Magnetic Properties of Bulk Metallic Glasses (인공신경망을 이용한 벌크 비정질 합금 소재의 포화자속밀도 예측 성능평가)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.273-278
    • /
    • 2023
  • In this study, based on the saturation magnetic flux density experimental values (Bs) of 622 Fe-based bulk metallic glasses (BMGs), regression models were applied to predict Bs using artificial neural networks (ANN), and prediction performance was evaluated. Model performance evaluation was investigated by using the F1 score together with the coefficient of determination (R2 score), which is mainly used in regression models. The coefficient of determination can be used as a performance indicator, since it shows the predicted results of the saturation magnetic flux density of full material datasets in a balanced way. However, the BMG alloy contains iron and requires a high saturation magnetic flux density to have excellent applicability as a soft magnetic material, and in this study F1 score was used as a performance indicator to better predict Bs above the threshold value of Bs (1.4 T). After obtaining two ANN models optimized for the R2 and F1 score conditions, respectively, their prediction performance was compared for the test data. As a case study to evaluate the prediction performance, new Fe-based BMG datasets that were not included in the training and test datasets were predicted using the two ANN models. The results showed that the model with an excellent F1 score achieved a more accurate prediction for a material with a high saturation magnetic flux density.

Effect of Nb and Mo Addition on the Microstructure and Wear Behavior of Fe-Cr-B Based Metamorphic Alloy Coating Layer Manufactured by Plasma Spray Process

  • Yong-Hoon Cho;Gi-Su Ham;So-Yeon Park;Choongnyun Paul Kim;Kee-Ahn Lee
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1521-1524
    • /
    • 2022
  • Fe-Cr-B-based metamorphic alloy coating layers were manufactured by plasma spray with a Fe-Cr-B-Mo-Nb composition (hereinafter, M+) powder. The microstructure and wear properties of the coating layers were investigated and compared with a metamorphic alloy coating layer fabricated with commercial M material. XRD analysis revealed that the M and M+ coating layers were composed of α-Fe, (Cr, Fe)2B, and some metallic glass phases. Wear test results showed that M+ coating layers had a superior wear resistance which had 1.48 times lower wear volume than M coating layers. Observations of the worn-out surfaces and cross-sections of the coating layers showed that M+ coating layer had relatively low oxides along the particle boundaries and it suppress a delamination behavior by the oxides.

Prediction of Transition Temperature and Magnetocaloric Effects in Bulk Metallic Glasses with Ensemble Models (앙상블 기계학습 모델을 이용한 비정질 소재의 자기냉각 효과 및 전이온도 예측)

  • Chunghee Nam
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.363-369
    • /
    • 2024
  • In this study, the magnetocaloric effect and transition temperature of bulk metallic glass, an amorphous material, were predicted through machine learning based on the composition features. From the Python module 'Matminer', 174 compositional features were obtained, and prediction performance was compared while reducing the composition features to prevent overfitting. After optimization using RandomForest, an ensemble model, changes in prediction performance were analyzed according to the number of compositional features. The R2 score was used as a performance metric in the regression prediction, and the best prediction performance was found using only 90 features predicting transition temperature, and 20 features predicting magnetocaloric effects. The most important feature when predicting magnetocaloric effects was the 'Fe' compositional ratio. The feature importance method provided by 'scikit-learn' was applied to sort compositional features. The feature importance method was found to be appropriate by comparing the prediction performance of the Fe-contained dataset with the full dataset.

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.

The Effect of P and Mo for Thermal and Chemical Properties of Fe-PC-B-Al-Mo Amorphous Alloys (Fe-P-C-B-Al-Mo계 비정질합금의 열적.화학적 성질에 미치는 P 및 Mo의 영향)

  • Gook, Jin-Seon;Chon, Woo-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • The melt-spun amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~10) and $Fe_{82-X}P_XC_4B_4Al_2Mo_8$(x=9~15) alloys were found to exhibit a large supercooled liquid region(${\Delta}T_x$) exceeding 40 K before crystallization. The largest ${\Delta}T_x$ for the glassy alloys containing Mo reaches as large as 65 K for the $Fe_{69}P_{13}C_4B_4Al_2Mo_8$ alloy. The corrosion behavior of the amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~15) and $Fe_(82-X)P_XC_4B_4Al_2Mo_8$ (x=9~17) alloys were examined by electrochemical measurements in 9M $H_2SO_4$ solution at 303 K. The addition of Mo(or P) for replacing some portion of Fe is effective in improving the corrosion resistance of the investigated Fe-based glassy alloys. They are spontaneously passivated and have a wide passive region with low passive current density.

Interfacial Properties of Antiferromagnetically-coupled Fe/Si Multilayeres Films

  • Kim, K.W.;Y.V.Kudryavtsev;J.Y.Rhee;J.Dubowik;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.168-168
    • /
    • 1999
  • Recently, Fe/Si multilayered films (MLF) have been a focus of interest due to the strong antiferromagnetic (AF) coupling observed in such kind of MLF originates from the same nature as in the metal/metal MLF. In particular, a question of whether the spacer layer in the Fe/Si MLF is metallic or semiconducting is of interest. In spite of various experimental techniques envolved in the study, the chemical composition and the properties of the interfacial regions in the MLF exhibiting the AF coupling is still questionable. The nature of the AF coupling and the interfacial properties of Fe/Si MLF are investigated in this study. A series of Fe/Si MLF with a fixed nominal thickness of Fe(3nm) and a variable thickness of Sk(1.0-2.2nm) were deposited by RF-sputtering onto glass substrates at room temperature. The atomic structures and the actual sublayer thicknesses of the Fe/Si MLF are investigated by using x-ray diffraction. The magnetic-field dependence of the equatorial Kerr effect clearly shows an appearance of the AF coupling between Fe sublayers at tsi = 1.5 - 1.8 nm. the drastic discrepancies between the experimental magnetooptical (MO) and optical properties, and based on the assumption of sharp interfaces between Fe and Si sublayers leads to a conclusion that pure si is absent in the AF-coupled Fe/Si MLF. Introducing in the model nonmagnetic semiconducting FeSi alloy layers between Fe and Si sublayers or as spacer between pure Fe sublayers only slightly improves the agreement between model and experiment. A reasonable agreement between experimental and simulated MO spectra was reached with using the fitted optical properties for the spacer with a typical metallic type of behavior. The results of the magnetic properties measured by vibrating sample magnetometer and magnetic circular dichroism are also analyzed in connection with the MO and optical properties.

  • PDF

Thermal Stability, Mechanical Properties and Magnetic Properties of Fe-based Amorphous Ribbons with the Addition of Mo and Nb

  • Han, Bo-Kyeong;Jo, Hye-In;Lee, Jin Kyu;Kim, Ki Buem;Yim, Haein
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.395-399
    • /
    • 2013
  • The metallic glass ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) were obtained by melt spinning with 25-30 ${\mu}m$ thickness. The thermal stability, mechanical properties and magnetic properties of Fe-Co-B-Si based systems were investigated. The values of thermal stability were measured using differential scanning calorimetry (DSC), including glass transition temperature ($T_g$), crystallization temperature ($T_x$) and supercooled liquid region (${\Delta}T_x=T_x-T_g$). These amorphous ribbons were identified as fully amorphous, using X-ray diffraction (XRD). The mechanical properties of Febased samples were measured by nano-indentation. Magnetic properties of the amorphous ribbons were measured by a vibrating sample magnetometer (VSM). The amorphous ribbons of $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Mo_4$ (x = 0, 0.3, 0.6, 0.9 at.%) and $[(Fe_xCo_{1-x})_{0.75}B_{0.2}Si_{0.05}]_{96}Nb_4$ (x = 0, 0.3, 0.6, 0.9 at.%) exhibited soft magnetic properties with low coercive force ($H_c$) and high saturation magnetization (Ms).

MAGNETIC PROPERTIES OF NANOCRYSTALLIZED METALLIC GLASSES AT ELEVATED TEMPERATURES

  • Lachowicz, Henryk K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.589-596
    • /
    • 1995
  • In the present paper some of the magnetic properties of the nanocrystalline Fe-based magnets produced by an appropriate annealing of their metallic glass precursors are reviewed. These properties are discussed on the grounds of their characteristics measured at the elevated temperatures. It is shown that the effective magnetostriction these magnets display, results from the competition among two contributions of the opposite sign originating from the individual magnetic phases, crystalline phase and the residual glassy matrix in which the nanocrystallites are embedded. It is also shown that at certain conditions the magnets considered expose superparamagnetic behavior and that their isothermal magnetization characteristics can successfully be used to calculate the distribution of the particle volumes. Application of the recently invented new genetic algorithm method, a powerful tool to calculate these distributions is, finally, presented.

  • PDF