• 제목/요약/키워드: Fe-based alloy nano powder

검색결과 24건 처리시간 0.021초

Cryogenic Tensile Behavior of Ferrous Medium-entropy Alloy Additively Manufactured by Laser Powder Bed Fusion

  • Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Hyoung Seop Kim;Jae Wung Bae;Jeong Min Park
    • 한국분말재료학회지
    • /
    • 제31권1호
    • /
    • pp.8-15
    • /
    • 2024
  • The emergence of ferrous-medium entropy alloys (FeMEAs) with excellent tensile properties represents a potential direction for designing alloys based on metastable engineering. In this study, an FeMEA is successfully fabricated using laser powder bed fusion (LPBF), a metal additive manufacturing technology. Tensile tests are conducted on the LPBF-processed FeMEA at room temperature and cryogenic temperatures (77 K). At 77 K, the LPBF-processed FeMEA exhibits high yield strength and excellent ultimate tensile strength through active deformation-induced martensitic transformation. Furthermore, due to the low stability of the face-centered cubic (FCC) phase of the LPBF-processed FeMEA based on nano-scale solute heterogeneity, stress-induced martensitic transformation occurs, accompanied by the appearance of a yield point phenomenon during cryogenic tensile deformation. This study elucidates the origin of the yield point phenomenon and deformation behavior of the FeMEA at 77 K.

Fe계 나노결정립 분말의 표면 산화에 따른 전자파 흡수특성 (Effect of the Surface Oxidation on the Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy)

  • 구숙경;우수정;문병기;송용설;박원욱;손근용
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.303-308
    • /
    • 2007
  • The oxidation of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder has been conducted to investigate its influence on the electromagnetic wave absorption characteristics of the soft magnetic material. Oxidation occurred primarily on the surface of nanocrystals. Oxidation reduced the real part of complex permeability due to the reduction of the relative volume of the powder, which otherwise contributes to the permeability. Oxidation reduced the absorption efficiency of the sheet at frequencies over 1GHz, indicating that the relative contribution of skin depth increments to the absorption was not significant. The pulverization and milling process lowered the optimum crystallization temperature of the material by $40{\sim}50^{\circ}C$ because of the internal energy accumulated during the fragmentation and powder thinning processes.

Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향 (Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores)

  • 조은경;조현정;권훈태;조은민;류혁현;손근용;박원욱
    • 한국분말재료학회지
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

BaTiO3 분말과 분산제 첨가에 따른 Fe계 나노결정 P/M시트의 전자파흡수 특성변화 (The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheet by the Additions of BaTiO3 Powder and Dispersant)

  • 김미래;조현정;박원욱
    • 한국분말재료학회지
    • /
    • 제15권1호
    • /
    • pp.53-57
    • /
    • 2008
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was pulverized using a jet mill and an attrition mill to get flake-shaped powder. The flake powder was mixed with dielectric $BaTiO_3$ powder and its dispersant to increase the permittivity. The powders covered with dielectric powders and its dispersant were mixed with a binder and a solvent and then tape-cast to form sheets. The absorbing properties of the sheets were measured to investigate the roles of the dielectric powder and its dispersant. The results showed that the addition of $BaTiO_3$ powders and its dispersant improved the absorbing properties of the sheets noticeably. The powder sheet mixed with 5 wt% of $BaTiO_3$ powder and 1 wt% of dispersant showed the best electromagnetic wave absorption rate because of the increase of the permittivity and the electrical resistance.

SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성 (Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode)

  • 이민진;최병현;지미정;안용태;홍선기;강영진;황해진
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.

자동차 부품용 Fe계 저합금 분말 소결품의 마찰마모 특성 연구 (A Study on Tribological Characteristics of Sintered Fe-base Low Alloy Powder for Automobile Parts)

  • 김태현;김상윤;김태규
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.139-144
    • /
    • 2012
  • In the automobile industry, the various efforts to lower their industrial cost and enhance fuel efficiency have been made through process improvement or weight saving of automobile parts. Gear is one of significant parts of transmission, which is made by cast iron or alloy steel. It is expensive due to complex processing, inferior materials and large machining allowance. In this study, alternative gear cars oil which is based on fluid applications materials is produced by reducing surface induction hardening and carburizing hardened in production. And then, wear characteristic and mechanical properties such as hardness of the sintered alloy which is used as a substitute for small machining allowance is investigated.

Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향 (Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys)

  • 박성현;오승탁
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

기계적 합금화하여 제조한 Fe-5Y2O3 합금분말의 나노산화물 석출거동 (A Precipitation Behavior of Nano-Oxide Particles in Mechanically Alloyed Fe-5Y2O3 Powders)

  • 김가언;노상훈;최지은;김영도;김태규
    • 한국분말재료학회지
    • /
    • 제22권1호
    • /
    • pp.46-51
    • /
    • 2015
  • A precipitation behavior of nano-oxide particle in Fe-$5Y_2O_3$ alloy powders is studied. The mechanically alloyed Fe-$5Y_2O_3$ powders are pressed at $750^{\circ}C$ for 1h, $850^{\circ}C$ for 1h and $1150^{\circ}C$ for 1h, respectively. The results of Xray diffraction pattern analysis indicate that the $Y_2O_3$ diffraction peak disappear after mechanically alloying process, but $Y_2O_3$ and $YFe_2O_4$ complex oxide precipitates peak are observed in the powders pressed at $1150^{\circ}C$. The differential scanning calorimetry study results reveal that the formation of precipitates occur at around $1054^{\circ}C$. Based on the transmission electron microscopy analysis result, the oxide particles with a composition of Y-Fe-O are found in the Fe-$5Y_2O_3$ alloy powders pressed at 1150oC. It is thus conclude that the mechanically alloyed Fe-$5Y_2O_3$ powders have no precipitates and the oxide particles in the powders are formed by a high temperature heat-treatment.

Fe계 합금 분말 소결품(SMF9060)의 마모 특성 연구 (A Study on Tribological Characteristics of Powder Sintered Fe-base Alloy (SMF9060))

  • 김상윤;김대욱;박영민;신동철;김태규
    • 열처리공학회지
    • /
    • 제27권2호
    • /
    • pp.65-71
    • /
    • 2014
  • SMF9060 material is a Fe-based powder sintered alloy that is used for several automobile components such as Synchronize Hub, oil pump and transmission. These components are required excellent wear resistance and durability. In this study, we have performed a dry wear test at the ambient air and Ar gas conditions in the room temperature, and a lubricant wear test at the room temperature and engine oil temperature of $100^{\circ}C$. The amount of wear volume and coefficient friction are measured by a Profilometer and a Ball on disk type wear tester. The wear volume in Ar gas condition was a little higher than that in the ambient air condition. However the wear volume in the lubricant wear condition was much lower than in the dry wear condition. XRD analysis of the debris in Ar gas condition showed that the oxide film was not formed.