• Title/Summary/Keyword: Fe-based Amorphous Alloys

Search Result 48, Processing Time 0.019 seconds

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Mean Field Analysis of Exchange Coupling in Amorphous RE$Fe_2$-B (RE=Dy, Sm) Alloy Ribbons (비정질 RE$Fe_2$-B (RE=Dy, Sm) 합금 리본에서 평균장 이론에 의한 교환상호작용 계산)

  • Lee, J. M.;J. K. Jung;S.H. Lim
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.3
    • /
    • pp.85-96
    • /
    • 2001
  • Experimental magnetization-temperature curves for melt-spun ribbons of amorphous alloys (Dy$\_$0.33/Fe$\_$0.67/)$\_$1-x/B$\_$x/(x=0 ,0.05, 0.1, and 0.15) and (Sm$\_$0.33/Fe$\_$0.67/)$\_$1-x/B$\_$x/(x=0, 0.01, 0.02, and 0.03) (in atomic fraction) are fitted with theoretical equations based on the mean field theory in order to calculate exchange couplings between constituent elements as a function of the B content. In the case of the DyFe$_2$-B system, the sign of the exchange coupling between Dy and Fe is negative, indicating that the magnetization direction of Dy is antiparallel to that of Fe. The sign of the other two couplings are positive indicating a parallel alignment. The exchange coupling between Fe ions are greatest, while that between Dy ions is negligible. In the case of the SmFe$_2$B alloys, the sign of all the couplings are positive, indicating ferromagnetic coupling between the spins. The exchange couplings between Fe ions, and Fe and Sm are comparable to each other, but they are much greater than that between Sm ions. The high exchange coupling between Fe and Sm, which is considered to occur indirectly, is rather unexpected, but it is considered to be unique characteristics of amorphous Sm-Fe alloys. In both alloy systems, the exchange coupling between Fe ions increases with increasing B content. and this may be explained by the increase of the Fe-Fe separation with increasing B content. The exchange coupling between Fe and RE also increases with increasing B content. As the B content increases, the magnetization decreases over the whole temperature range, and the Curie temperature also decreases.

  • PDF

The Effects of Co-substitution on the Magnetic Properties of Nanocrystalline Nd-Fe-B based Alloy Containing α-Fe as Main Phase (Co 치환이 α-Fe기 초미세결정립 Nd-Fe-B계 합금의 자기특성에 미치는 영향)

  • Cho, D.H.;Cho, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.30-33
    • /
    • 2002
  • The Effects of Co-substitution in the nanocrystalline Nd-Fe-B-Mo-Cu alloys were investigated. $\alpha$-Fe based nanocrystalline Nd-Fe-B-Mo-Cu alloys were prepared by crystallization process of amorphous Nd-Fe-B-Mo-Cu alloy produced by rapid solidification process. The substitution of Co resulted in the decrease of grain size and improves the hard magnetic properties. The remanence, coercivity, and Curie temperature of nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy showed more improved magnetic properties than those of Co-free alloy. The grain size was measured to be about 15 nm. The coercivity, remanence and maximum energy product were 239 kA/m, 1.41, and 103.5 kJ/ $m^3$, respectively, for the nanocrystalline N $d_4$(F $e_{0.85}$ $Co_{0.15}$)$_{82}$ $B_{10}$M $o_3$Cu alloy annealed for 0.6 ks at 640 $^{\circ}C$.

Formation of Induced Anisotropy in Amorphous Sm-Fe Based Alloy Thin Films (비정질 Sm-Fe계 합금 박막의 유도자기이방성 형성)

  • 송상훈;이덕열;한석희;김희중;임상호
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.261-269
    • /
    • 1998
  • Induced anisotropy with the energy of $6{\times}10^4\; J/m^3$ is obtained in amorphous Sm-Fe based thin films which are fabricated by rf magnetron sputtering under a magnetic field of 500~600 Oe. Compared with conventional thin films, the anisotropic thin films exhibit a similar "saturation" magnetostriction, but show a very large anisotropy in magnetorstiction which is of significant practical importance due to increased strain at a particular direction. It is shown from a systematic investigation over a wide composition range for binary Sm-Fe alloys that anisotropy is also induced, though small, during a normal sputtering procedure due to the stray field, and the largest anisotropy is observed in the composition range of 25~30 at.% Sm. Furthermore, induced anisotropy is also found to be formed by magnetic annealing, but the anisotropy energy is much smaller than that by magnetic sputtering. This may be because the volume diffusion by which atoms move during magnetic annealing to from induced anisotropy is much slower than the surface diffusion which is expected to be a dominant factor during magnetic sputtering.puttering.

  • PDF

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.

Magnetic Properties and Domain structures of Fe-based Amorphous Alloys with Magnetic Annealing (자장열처리시킨 Fe기 비정질합금의 자기적성질과 자구구조)

  • 김태호;정광호;송진태
    • Electrical & Electronic Materials
    • /
    • v.1 no.4
    • /
    • pp.319-332
    • /
    • 1988
  • 높은 포화자속밀도와 낮은 철손을 갖는 Fe/aub 80/B$_{12}$Si$_{8}$ 비정질합금을 일반열처리, 자장열처리시켜 그의 자기적특성과 자구구조와의 관계를 조사하였다. 이를 위하여 Fe$_{80}$B$_{12}$Si$_{8}$ 비정질리본을 단롤법으로 제작하여 결정화온도를 측정하였으며 측정된 결정화온도 이하의 여러 온도에서 30분간 Ar-gas 분위기하에서 일반열처리, 자장열처리를 행하였다. 이와같이 하여 준비된 시료의 자기적특성을 조사하기 위하여 D.C., A.C. Recorking Fluxmeter를 이용하였으며 자구구조는 Bitter method로 관찰하였다. as-cast 상태의 시료를 일반열처리함에 따라 내부응력이 완화되면서 maze자구가 점차 사라지고 wave형태의 180.deg.자구가 관찰되었다. 동시에 자화과정에 있어서 자기이력곡선은 Barkhausen jump가 없어 smooth하였다. 그리고 자장열처리시에는 as-cast 상태나 일반열처리에 비해 자기적특성이 현저하게 향상되었으며 이는 열처리를 행함에 따라 내부응력이 완화되면서 maze 자구가 없어지고 일축자기 이방성으로 리본길이방향에 평행하게 형성된 180.deg.자구에 기인하는 것이라 사료된다. 그리고 자장열처리의 경우, 폭방향으로 열처리한 리본의 자구폭은 길이방향으로 열처리한 리본의 폭보다 미세하였으며 전자의 이력손실이 후자의 것보다 더 컸다.다.

  • PDF

Variation of Asymmetric Hysteresis Loops with Annealing Temperature and Time (열처리 온도와 시간에 따른 비대칭 자기 이력 곡선의 변화)

  • 신경호;민성혜;이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.251-260
    • /
    • 1995
  • It has been reported that Co-based amorphous ferromagnetic alloys annealed in a small magnetic field develop a reproducible, asymmetric hysteresis loop. If the direction of the field during annealing is regarded as +, the magnetization reversal from - to + is smooth and reversible, with its slope determined by the demagnetizing field of the sample. This phenomenon is called the asymmetric magnetization reversal (AMR). The shape of the hyster-esis loop depends sensitively on the condition during the anneal and the alloy composition. Here, we report on the effect of the annealing temperature and time on AMR in a zero magnetostrictive ferromagnetic amorphous alloy. The AMR effect develops in a very short time at a reasonably high temperature, but is stabilized by annealing for a prolonged time.

  • PDF