• Title/Summary/Keyword: Fe-Ti oxide 광화작용

Search Result 3, Processing Time 0.018 seconds

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area (포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구)

  • Lee, Ji-Hyun;Kim, Eui-Jun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.77-95
    • /
    • 2022
  • The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.

A Preliminary Study on the Igneous Layering and Concentration of Fe-Ti Oxide Minerals within Amphibolite in Soyeonpyeong Island (소연평도 각섬암 내 화성기원 층상구조와 Fe-Ti 산화광물의 농집에 관한 예비연구)

  • Kim, Eui-Jun
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.375-387
    • /
    • 2017
  • Amphibolite-hosted Fe-Ti mineralization at the Soyeonpyeong Island, located in central western part of the Korean Peninsula is a typical orthomagmatic Fe-Ti oxide deposit in South Korea. The amphibolite intruded into NW-SE trending Precambrian metasedimentary rocks. Lower amphibolite is characterized by igneous layering, consisting of feldspar-dominant and amphibole-Fe-Ti oxide-dominant layers. The igneous layering shows complicated and/or sharp contact. In contrast, upper amphibolite has a more complicated lithofacies (garnet-bearing, coarser, and schistose), and massive Fe-Ti oxide ore alternates with schistose amphibolite. NS- and EW-trending fault systems lead to redistribute upper amphibolite-hosted Fe-Ti orebody and igneous layering of lower amphibolite, respectively. The whole-rock compositions of amphibolite and Fe-Ti oxide ore reflect their constituent minerals. Amphibolite shows significantly positive Eu anomalies whereas Fe-Ti oxide ore has weak negative Eu anomalies. Plagioclase (Andesine to oligoclase) and Fe-Ti oxide minerals have constant composition regardless of their distribution. Amphibole has a compositionally variable but it doesn't reflect the chemical evolution. Mineral compositions within individual layers and successive layers are relatively constant not showing any stratigraphic evolution. This suggests that there are no successive injections of Fe-rich magma or assimilation with Fe-rich country rocks. Contrasting Eu anomalies between amphibolite and Fe-Ti oxide ore also suggest that extensive plagioclase fractionation during early crystallization stage cause increase in $Fe_2O_3/FeO$ ratio and overall Fe contents in the residual magma. Thus, Fe-rich residual liquids may migrate at the upper amphibolite by filter pressing mechanism and then produce sheeted massive Fe-Ti mineralization during late fractional crystallization.

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.