• Title/Summary/Keyword: Fe-Pt

Search Result 441, Processing Time 0.022 seconds

Magnetic Properties of FePt:C Nanocomposite Film

  • Ko, Hyun-Seok;A. Perumal;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.220-221
    • /
    • 2003
  • Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1$\_$0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$. So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated.

  • PDF

MAGNETO-OPTICAL INVESTIGATION OF LOW-DEMENSIONAL MAGNETIC STRUCTURES

  • Shalyguina, E.E.;Kim, Cheol-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.13-16
    • /
    • 2003
  • Magnetic and magneto-optical properties of Fe/Pt/Fe, Co/Pd/Co trilayers and also the sandwiches with wedge-shaped magnetic (Fe, Co) and nonmagnetic (Pt, Pd) layers were investigated. The oscillatory behavior of the saturation field $H_{s}$ of the studied trilayers with changing the thickness of the nonmagnetic layer (NML) $t_{NML}$ was revealed. That was explained by the exchange coupling between ferromagnetic layers (FML) through the nonmagnetic spacer. For the first time, oscillations of the transverse Kerr effect (TKE) with changing the Pt- and Pd-wedge thickness were discovered. Period of these oscillations was found to depend on the FML thickness and the photon energy of the incident light. TKE spectra of the examined samples were discovered to modify very strongly with increasing $t_{NML}$. The discovered peculiarities of magneto-optical properties of thin-film systems were explained by a concept of the spin-polarized quantum well states in the pt and Pd layers.

  • PDF

Magnetic characteristics of Pt/Co modualted films (Pt/Co 인공격자다층막의 자기특성에 관한 연구)

  • Kim, Chan-Wook;Onishi, Atushi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.233-240
    • /
    • 1994
  • We have investigated how the magneto-optical and recording properties of Pt/Co modulated films vary with sample preparation conditions : sputtering at various gas pressures, sputtering with Xe instead of Ar, and etching the buffer layers, etc. The magneto-optical characteristics of Pt/Co multilayers was comparable with those of currently prevailing rare-earth transition-metal alloys(Tb-Fe-Co amorphous films). On a disk of $12{\times}[Pt10.7\;{\AA}/Co2.8{\;}{\AA}]$ multilayer enhanced with 70nm silicon nitride, we have achieved a CNR of 36dB with a reading laser(${\lambda}\;=\;780nm$) power of 2.5-4.5mW for 720KHz carrier at 1.4m/s and the enhanced kerr rotation angle of $1.23^{\circ}$ at 780nm. It is suggested that Pt/Co modulated films clearly are very promising magneto-optical materials for a commercially use.

  • PDF

Effects of Electrode and Matrix in the PAFC Performance (전극 및 메트릭스가 인산형 연료전지의 성능에 미치는 영향)

  • Kim, Dong-Jin;Song, Rak-Hyun;Lee, Byung-Rok;Kim, Chang-Soo;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1873-1875
    • /
    • 1999
  • The effects of electrode and matrix in the PAFC were investigated using AC-impedance spectroscopy. The performance of PAFC was determined by changing external electronic load. AC impedance measurement was carried out as functions of phosphoric acid impregnation temperature. operating temperature and matrix coating method using various cathodes ; 20%Pt/C, 20%Pt-Ni/C, 20%Pt-Co-Ni/C, 10%Pt-Fe-Co/C, and 20%Pt-Fe-Co/C From the analysis of measured impedance data, the interfacial resistance decreased with increasing operating temperature. and with decreasing impregnation temperature. As compared with the alloy catalysts, Pt catalyst showed a lower interfacial resistance. This consist with the cell performance.

  • PDF

Study on the Spin Valve Giant Magnetoresistance With a New Mn-Ir-Pt Antife rromagnetic Material (Mn-Ir-Pt 새로운 반강자성체를 사용한 스핀밸브 거대자기저항에 관한 연구)

  • 서수정;윤성용;김장현;전동민;김윤식;이두현
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.141-145
    • /
    • 2001
  • The Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ exchange bias layers (EBLs), which have a small amounts of Pt, exhibit a high value of H$\_$ex/. The Si/Ni-Fe/Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBL shows the largest H$\_$ex/ of 187 Oe, which is equivalent to a exchange energy (J$\_$ex/) of 0.146 erg/cm$^2$. Mn$\_$80/Ir$\_$18.1/Pt$\_$1.9/ EBLS are estimated to have blocking temperature of about 250 $\^{C}$, which is higher than those of Mn-Ir EBLs and Mn-Ir-Pt EBLs with higher Pt contents. This result implies that a little addition of Pt element promotes thermal stability in the Mn-Ir-Pt EBLs. The chemical stability of Mn-Ir-Pt EBLs was characterized by potentiodynamic test, which was performed in 0.001 M NaCl solution. The current density of Mn-Ir-Pt films was gradually reduced with increasing Pt content. The present results indicate that the Mn-Ir-Pt with a small amount of Pt is suitable for an antiferromagnetic material for a reliable spin valve giant magnetoresistance device.

  • PDF

Recovery of Precious Metals from Spent Catalyst Generated in Domestic Petrochemical Industry (한내 석유화학 폐촉매로부터 귀금속의 회수 연구)

  • 김준수;박형규;이후인;김성돈;김철주
    • Resources Recycling
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Recovery of precious metal values from petrochemical spent catalyst is important from the viewpoint of environmental protection and resource recycling. Two types of spent catalysts were used in this study. One used in the manufacture of ethylene contains 0.3% Pd in the alumina substrate. The other used in oil refining contains 0.3% Pt and 0.3% Re. Both spent catalysts are roasted to remove volatile matters as carbon and sulfur. Then, metallic Pd powder from Pd spent catalyst is obtained in the course of grinding, hydrochloric acid or aqua regia leaching and cementation with iron. For the recovery of Pt and Re from Pt-Re spent catalyst, Pt and Re are leached with either HCI or aqua regia, first. Metallic Pt powder is recovered from the leach solution by cementation with Fe powder. Re in sulfide form is precipitated by the addition of sodium sulfide to the solution obtained after Pt recovery. It is found that 6N HCI can be successfully used as leaching agent for both types of spent catalyst. 6N HCI is considered to be better than aqua regia in consideration of reagent and equipment cost.

  • PDF

An Reliable Non-Volatile Memory using Alloy Nano-Dots Layer with Extremely High Density

  • Lee, Gae-Hun;Kil, Gyu-Hyun;An, Ho-Joong;Song, Yun-Heup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.241-241
    • /
    • 2010
  • New non-volatile memory with high density and high work-function metal nano-dots, MND (Metal Nano-Dot) memory, was proposed and fundamental characteristics of MND capacitor were evaluated. In this work, nano-dot layer of FePt with high density and high work-function (~5.2eV) was fabricated as a charge storage site in non-volatile memory, and its electrical characteristics were evaluated for the possibility of non-volatile memory in view of cell operation by Fowler-Nordheim (FN)-tunneling. Here, nano-dot FePt layer was controlled as a uniform single layer with dot size of under ~ 2nm and dot density of ${\sim}\;1.2{\times}10^{13}/cm^2$. Electrical measurements of MOS structure with FePt nano-dot layer shows threshold voltage window of ~ 6V using FN programming and erasing, which is satisfied with operation of the non-volatile memory. Furthermore, this structure provides better data retention characteristics compared to other metal dot materials with the similar dot density in our experiments. From these results, it is expected that this non-volatile memory using FePt nano-dot layer with high dot density and high work-function can be one of candidate structures for the future non-volatile memory.

  • PDF