• Title/Summary/Keyword: Fe-Cr-Al alloy

Search Result 90, Processing Time 0.028 seconds

The Performance of NI/$MgAl_2O_4$ Coated Metal Monolith in Natural Gas Steam Reforming for Hydrogen Production (NI/$MgAl_2O_4$코팅된 금속 모노리스 촉매의 수소 생산을 위한 천연가스 수증기 개질 반응특성에 관한 연구)

  • Choi, Eun-Jeong;Koo, Kee-Young;Jung, Un-Ho;Rhee, Young-Woo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.500-506
    • /
    • 2010
  • The metal monolith catalyst coated with 15wt% Ni/$MgAl_2O_4$ is applied to the natural gas steam reforming for hydrogen production. To address the improvement of adherence between metal monolith and catalyst coating layer, the pre-calcination temperature as well as the coating conditions of $Al_2O_3$ sol are optimized. When the Fe-Cr alloy monolith is pre-calcined at $900^{\circ}C$ for 6 h, $Al_2O_3$ layer was formed uniformly on the entire surface of the metal substrate. It is seen that the formation of $Al_2O_3$ layer on the monolith surface is essential for the uniform coating of $Al_2O_3$ sol onto the monolith substrate. The monolith catalyst coated with 10wt% $Al_2O_3$ sol shows high $CH_4$ conversion and good thermal stability as compared with the monolith catalyst without $Al_2O_3$ sol coating under severe reaction conditions with high GHSV of 30,000 $h^{-1}$ at $700^{\circ}C$. In addition, the metal monolith catalyst shows higher catalytic activity and better thermal conductivity than 15wt% Ni/$MgAl_2O_4$ pellet catalyst.

A Study on the Development of Compactability and Electrical Resistivity for P/M Fecralloy (P/M Fecralloy의 성형성 및 전기저항특성 향상에 관한 연구)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-Young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.426-431
    • /
    • 2016
  • The Fe-Cr-Al alloy system shows an excellent heat resistance because of the formation of an $Al_2O_3$ film on the metal surface in an oxidizing atmosphere at high temperatures up to $1400^{\circ}C$. The Fecralloy needs an additive that can act as a binder because of its bad compactability. In this study, the green compacts of STS434L and Al powder added to Fecralloy are oxidized at $950^{\circ}C$ for up to 210 h. Fecralloy and Al is mixed by two types of ball milling. One is vented to air and the other was performed in a sealed jar. In the case of Al addition, there are no significant changes in the electrical resistance. Before the oxidation test, Al oxides are present in the Fecralloy surface, as determined from the energy dispersive spectroscopy results. The addition of Al improves the compactability because of an increased density, and the addition of STS434L increases the electrical resistivity by forming a composite oxide.

Deposition Properties of NiCr Thin Films Prepared by Thermal Evaporation (Thermal Evaporation법으로 제조한 NiCr 박막의 증착 특성)

  • Kun, Yong;Park, Yong-Ju;Choi, Seoung-Pyung;Jung, Jin;Choi, Gwang-Pyo;Ryu, Hyun-Wook;Park, Jin-Seong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.450-455
    • /
    • 2004
  • NiCr thin films were fabricated by thermal evaporation method using NiCr alloy as evaporating source. NiCr thin films were annealed at various temperatures in air atmosphere in order to investigate effects of annealing conditions on phase change, composition, and microstructures of NiCr films. Typical multilayer was formed after annealing in air atmosphere. This results from the diffusion and oxidation of Cr toward surface during annealing. In the case of annealing at 700$^{\circ}C$, large columnar grains of NiO were formed on Cr-oxide layer through the diffusion and oxidation of Ni over Cr-oxide layer. Especially, NiO layer was formed additionally on surface, sustaining the underlayer structure with the formation of porous Ni layer.

A Study on the Corrosion Characteristics Evaluation for Reactor Material of Waste Water Treatment (폐수처리 반응기용 재질의 부식특성 평가에 대한 연구)

  • Kim, Ki-Tae;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • As the operating conditions in a supercritical oxidation reactor are set in high temperature with high pressure causing a reactor suffering from the harsh circumstances. It means the reactor adopts itself with Fe-Cr alloy in acidic atmosphere with low pH value and Ni alloy in basic atmosphere with high pH value due to its superior corrosion resistance. The study, whose target waster water is pertinent to the latter part, has selected Ni alloy such as ostenite type stainless steel 304 and 316, superstainless steel AL6XN, Inconel 625, MAT 21, and titanium Gr. 5 in order to measure corrosion resistance against those samples under the same conditions of temperature and pressure applied for a supercritical oxidation reactor. The result shows the identifiable difference in corrosion resistance by observing the surface states through a scanning probe microscope as well as measuring the weight loss through making the samples above deposited in wastewater for two-week and four-week stay. The purpose of this corrosion experiment is to identify the most corrosion-resistant material among sample species pre-selected according to pH concentration of wastewater in pursue of applying for a reactor exposed to the extreme corrosion environment. It is because such a reactor made of a verified material enables to safeguard a stable operation under the supercritical wastewater processing facility.

  • PDF

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Controlled Surface Functionalities of metals using Femtosecond Laser-induced Nano- and Micro-scale Surface Structures (펨토초 레이저 유도 나노 및 마이크로 구조물을 활용한 금속 표면 기능성 제어)

  • Taehoon Park;Hyo Soo Lee;Hai Joong Lee;Taek Yong Hwang
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.55-61
    • /
    • 2023
  • With femtosecond (fs) laser pulse irradiation on metals, various types of nano- and micro-scale structures can be naturally induced at the surface through laser-matter interaction. Two notable structures are laser-induced periodic surface structures (LIPSSs) and cone/spike structures, which are known to significantly modify the optical and physical properties of metal surfaces. In this work, we irradiate fs laser pulses onto various types of metals, cold-rolled steel, pickled & oiled steel, Fe-18Cr-8Ni alloy, Zn-Mg-Al alloy coated steel, and pure Cu which can be useful for precise molding and imprinting processes, and adjust the morphological profiles of LIPSSs and cone/spike structures for clear structural coloration and a larger range of surface wettability control, respectively, by changing the fluence of laser and the speed of raster scan. The periods of LIPSSs on metals used in our experiments are nearly independent of laser fluence. Accordingly, the structural coloration of the surface with LIPSSs can be optimized with the morphological profile of LIPSSs, controlled only by the speed of the raster scan once the laser fluence is determined for each metal sample. However, different from LIPSSs, we demonstrate that the morphological profiles of the cone/spike structures, including their size, shape, and density, can be manipulated with both the laser fluence and the raster scan speed to increase a change in the contact angle. By injection molding and imprinting processes, it is expected that fs laser-induced surface structures on metals can be replicated to the plastic surfaces and potentially beneficial to control the optical and wetting properties of the surface of injection molded and imprinted products.

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

Cause Analysis Ignited at a Far Infrared Radiation Heater (원적외선 히터에서 출화된 화재의 원인분석)

  • Kim, Dong-Ook;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • This research studied about the cause analysis of fire that was occurred in far infrared rays heater to base on the fire examples. Fire of electric heater was apt to commit error that handled an over-heating accident by judged molten mark in heat ray. Molten mark which was attached in heat ray was appeared to the form of layer short circuit by other metal material, but other metal material was not found beside the ingredient of heat wire which was mixed to an alloy of Fe-Cr-Al according to result of ingredient distribution by SEM/EDX. Also, the result of overheating experiment by layer short circuit and overvoltage showed higher febrility than normal, but there was no possibility of fire occurrence. This paper will be contributed to science for cause analysis of electric fire through analyzing physical, chemical and flame features of burnout heater on the basis of diagnosis of fire that was happened in infrared rays heater.

Electrospray and Thermal Treatment Process for Enhancing Surface Roughness of Fecralloy Coating Layer on a Large Sized Substrate (대면적 Fecralloy 코팅층의 표면 거침도 극대화를 위한 정전분무 및 열처리 공정 연구)

  • Lee, Hye Moon;Koo, Hye Young;Yang, Sangsun;Park, Dahee;Jung, Sooho;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • Fecralloy coating layer with large surface area is suitable for use as a filter media for efficient removal of hot gaseous pollutants exhausted from combustion processes. For uniform preparation of a Fecralloy coating layer with large surface area and strong adhesion to substrate, electrospray coating and thermal treatment processes are experimentally optimized in this study. A nano-colloidal solution with 0.05 wt% Fecralloy nanoparticles is successfully prepared. Optimized electrospraying conditions are experimentally discovered to prepare a uniform coating layer of Fecralloy nano-colloidal solution on a substrate. Drying the electrospray coated Fecralloy nano-colloidal solution layer at $120^{\circ}C$ and subsequent heating at $600^{\circ}C$ are the best post-treatment for enhancing the adhesion force and surface roughness of the Fecralloy coating layer on a substrate. An electrospray coating system, consisting of several multi-groove nozzles, is also experimentally confirmed as a reasonable device for uniform coating of Fecralloy nano-colloid on a large area substrate.

Evaluations of Si based ternary anode materials by using RF/DC magnetron sputtering for lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.302-303
    • /
    • 2010
  • Generally, the high energy lithium ion batteries depend intimately on the high capacity of electrode materials. For anode materials, the capacity of commercial graphite is unlike to increase much further due to its lower theoretical capacity of 372 mAhg-1. To improve upon graphite-based negative electrode materials for Li-ion rechargeable batteries, alternative anode materials with higher capacity are needed. Therefore, some metal anodes with high theoretic capacity, such as Si, Sn, Ge, Al, and Sb have been studied extensively. This work focuses on ternary Si-M1-M2 composite system, where M1 is Ge that alloys with Li, which has good cyclability and high specific capacity and M2 is Mo that does not alloy with Li. The Si shows the highest gravimetric capacity (up to 4000mAhg-1 for Li21Si5). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. Si thin film is more resistant to fracture than bulk Si because the film is firmly attached to the substrate. Thus, Si film could achieve good cycleability as well as high capacity. To improve the cycle performance of Si, Suzuki et al. prepared two components active (Si)-active(Sn, like Ge) elements film by vacuum deposition, where Sn particles dispersed homogeneously in the Si matrix. This film showed excellent rate capability than pure Si thin film. In this work, second element, Ge shows also high capacity (about 2500mAhg-1 for Li21Ge5) and has good cyclability although it undergoes a large volume change likewise Si. But only Ge does not use the anode due to its costs. Therefore, the electrode should be consisted of moderately Ge contents. Third element, Mo is an element that does not alloys with Li such as Co, Cr, Fe, Mn, Ni, V, Zr. In our previous research work, we have fabricated Si-Mo (active-inactive elements) composite negative electrodes by using RF/DC magnetron sputtering method. The electrodes showed excellent cycle characteristics. The Mo-silicide (inert matrix) dispersed homogeneously in the Si matrix and prevents the active material from aggregating. However, the thicker film than $3\;{\mu}m$ with high Mo contents showed poor cycling performance, which was attributed to the internal stress related to thickness. In order to deal with the large volume expansion of Si anode, great efforts were paid on material design. One of the effective ways is to find suitably three-elements (Si-Ge-Mo) contents. In this study, the Si based composites of 45~65 Si at.% and 23~43 Ge at.%, and 12~32 Mo at.% are evaluated the electrochemical characteristics and cycle performances as an anode. Results from six different compositions of Si-Ge-Mo are presented compared to only the Si and Ge negative electrodes.

  • PDF