• Title/Summary/Keyword: Fe-Cr

Search Result 1,710, Processing Time 0.03 seconds

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas

  • Lee, Dong Bok;Yuke, Shi
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.

Synthesis and Characterization of Polyphase Waste Form to Immobilize High Level Radioactive Wastes (고준위 방사성 폐기물의 고정화를 위한 다상 고화체 합성)

  • Chae Soo-Chun;Jang Young-Nam;Bae In-Kook;Ryu Kyung-Won
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.173-180
    • /
    • 2006
  • The synthesis of polyphase waste form, which is an immobilization matrix fur the high level radioactive wastes, was performed with the mixed composition of garnet and spinel $(Gd_3Fe_5O_{12}+(Ni_xMn_{1-x})(Fe_yCr_{1-y})_2O_4)$ in the range of 1200 to $1400^{\circ}C$. The phases synthesized from all stoichiometric compositions were garnet, perovskite, and spinel. Especially, garnet was synthesized only in the composition of the highest content of Fe(y=0.9), whereas it was not synthesized in other compositions. This result indicated that the content of Fe was closely related to the formation of garnet. The composition of garnet revealed that the content of Gd was exceeded and that of Fe was depleted. Preferential distribution of elements in the phases can be attributed to the nonstoichiometric composition of garnet.

The Study of Antiferromagnetic Spin-lattice Coupling of FeCr2Se4 (FeCr2Se4의 반강자성 스핀-격자 상호작용 연구)

  • Kang, Ju-Hong;Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung;Lee, H.G.;Park, Min-Seok;Lee, Sung-Ik
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.86-89
    • /
    • 2007
  • [ $FeCr_2Se_4$ ] prepared under the high pressure (3 GPa) has been studied with x-ray, neutron diffraction techniques, superconducting quantum interference device (SQUID) magnetometer, resistance, and Mossbauer spectroscopy. The temperature dependence of resistance is explained by Mott-VRH and small polaron model for the regions I (T<20 K) and II (T>42 K), respectively. Neutron diffraction results show an antiferromagnetic spin-lattice coupling near the Neel temperature. So finally the distance of atom is enlarged in region (110$FeCr_2Se_4$ shows convex type of temperature dependence.

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Complex heat-treatment effects on as-built CoCrMo alloy (적층공정법으로 제작된 CoCrMo 합금의 복합열처리 효과)

  • Lee, Jung-Il;Kim, Hung Giun;Jung, Kyung-Hwan;Kim, Kang Min;Son, Yong;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.250-255
    • /
    • 2018
  • The CoCrMo as-built alloys prepared by 3D-printing process are studied on tensile strength, wear resistance, crystal structure and microstructure after complex heat-treatment including HIP. In this study, HIP treatment for removing micropores, ambient heat-treatment for formation of metal carbides, and solution heat-treatment for homogenization of the created metal carbides were tried and characterized for applying to artificial joint. The complex heat-treatment effects of the CoCrMo as-built alloys prepared by 3D-printing process were owing to the densification during HIP, formation of metal carbides and homogenization of the created metal carbides. The effects of the complex heat-treatment were confirmed by XRD, FE-SEM and EDS.

The Magnetic Properties of Amorphous F$e_32Ni_36Cr_14P_12B_6$ (비정질 F$e_32Ni_36Cr_14P_12B_6$의 자기적 성질)

  • Kim, Jung-Gi
    • Korean Journal of Materials Research
    • /
    • v.2 no.4
    • /
    • pp.293-297
    • /
    • 1992
  • The magnetic properties of the amorphous Fe/sub 32/Ni/sub 36/Cr/sub 14/P/sub 12/B/sub 6/ has been studied by Mossbauer spectroscopy in the temperature range of 88-400K. The analysis of the spectrum of B8K, the magnetic hyperfine field and quadrupole splitting are found to be 140.5kOe and almost zero, which means that the magnetic hyperfine field is randomly oriented with respect to the principal axes of the electric field gradient, respectively. The values of quadrupole splitting in paramagnetic phase with Tc=280K are independent on the changes of temperature. Debye temperature is found to be about 288k from the analysis of recoilless fraction.

  • PDF