Synthesis and Characterization of Polyphase Waste Form to Immobilize High Level Radioactive Wastes

고준위 방사성 폐기물의 고정화를 위한 다상 고화체 합성

  • Chae Soo-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ryu Kyung-Won (Department of Earth and Environment Science, Chungbuk National University)
  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 류경원 (충북대학교 지구환경과학과)
  • Published : 2006.04.01

Abstract

The synthesis of polyphase waste form, which is an immobilization matrix fur the high level radioactive wastes, was performed with the mixed composition of garnet and spinel $(Gd_3Fe_5O_{12}+(Ni_xMn_{1-x})(Fe_yCr_{1-y})_2O_4)$ in the range of 1200 to $1400^{\circ}C$. The phases synthesized from all stoichiometric compositions were garnet, perovskite, and spinel. Especially, garnet was synthesized only in the composition of the highest content of Fe(y=0.9), whereas it was not synthesized in other compositions. This result indicated that the content of Fe was closely related to the formation of garnet. The composition of garnet revealed that the content of Gd was exceeded and that of Fe was depleted. Preferential distribution of elements in the phases can be attributed to the nonstoichiometric composition of garnet.

석류석과 스피넬의 혼합성분$(Gd_3Fe_5O_{12}+(Ni_xMn_{1-x})(Fe_yCr_{1-y})_2O_4)$으로부터 고준위 방사성 폐기물의 고정화를 위한 다상 고화체를 $1200{\sim}1400^{\circ}C$에서 합성하였다. 이들 화학조성에서는 석류석, 페롭스카이트 및 스피넬이 관찰되었으며, 특히 석류석은 Fe의 함량이 가장 높았던 조성에서만 관찰되는 특성을 보임으로써 Fe의 함량이 석류석의 형성과 밀접한 관계를 지시하고 있다. 석류석의 성분은 Gd와 Fe가 각각 초과 및 결핍된 양상을 보였다. 이같은 석류석의 비화학 양론적인 조성은 상들과 원소간의 선호적 배분관계에 기인된 것으로 사료된다.

Keywords

References

  1. 장영남, 채수천, 배인국, Yudintsev, S. Y. (2002) 새로운 파이로클로어의 합성 및 결정화학적 특정. 한국광물학회지, 15권, p. 78-84
  2. 채수천, 배인국, 장영남, Yudintsev; S.Y. (2003) 고준위 방사성폐기물의 고정화를 위한 Fe-석류석 합성 연구. 한국광물학회지, v. 16, p. 307-320
  3. 채수천, 배인국, 장영남, Yudintsev, S.Y. (2004) Ca-CeHf- Ti-O System에서의 파이로클로어 합성 . 지원환경지질 , v. 37, p. 375-381
  4. Burakov, B.E. and Anderson, E.B. (1998) Development of Crystalline Ceramic for Immobilization of TRU Wastes in Y.G. Khlopin Radium Institute. Proceedings of the 2nd NUCEF International Sympo-sium NUCEF'98, 16-17/11/98, Hitachinaka, Ibaraki, Japan, JAERI-Conf.99-004(Part I), p. 295-306
  5. Burakov, B.E. and Strykanova, E.E. (1998) Garnet Solid Solution of $Y_{3}AI_{5}O_{12}-Gd_{3}Ga_{5}O_{12}-Y_{3}Ga_{5}O_{12}$(YAG-GGGYGG) as a Prospective Crystalline Host-Phase for Pu Immobilization in the Presence of Ga. Proceedings of the International Conference Waste Management'98, Tucson, Arizona, USA, 1-5/03/1998, CD version, http://localhost:6017/html/sess34/34-05/34-05.htm
  6. Burakov, B.E., Anderson, E.B. and Knecht, D.A. (1999) Ceramic Forms for Immobilizing Pu Using Zr, Y, AI Metal Additives. Environmental Issues and Waste Management Technologies IV, American Ceramic Society, Westerville, Ohio, p. 349-356
  7. Burakov, B.E., Anderson, E.E., Zamoryanskaya, M.V. and Petrova, M.A. (2000) Synthesis and study of $ ^{239}$Pu_ dopedgadolinium-aluminum garnet. Mat. Res. Soc. Symp. Proc., v. 608, p. 419-422
  8. Ewing, R.C. (1999) Nuclear Waste Forms for Actinides. Proc. NatiI. Acad. Sci., v. 96, p. 3432-3439
  9. Ewing, R.C., Weber, W.J. and Clinard, Jr. W. (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progress in Nuclear Energy, v. 29, p. 63-127 https://doi.org/10.1016/0149-1970(94)00016-Y
  10. Harker, A.B. (1998) Tailored ceramics. In: Radiactive waste forms for the future. Lutze, W. and Ewing, R.C. (Eds.), Elsevier, North-Holland, Amsterdam, Netherlands, p. 335-392
  11. Luo, S., Zhu, X. and Tang, B. (1998) Actinides containment by using zirconolite-rich Synroc. Proc. of International Meeting on Nuclear and Hazardous Waste Management (Spectrum 98), Arnerican Nuclear Society, La Grange Park, IL, p. 829-833
  12. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Woolfrey, J,L. and Ramm, E.J. (1988) Radioactive waste forms for the future. edited by W Lutze and Ewing, R.C., Elsev., Arnst., p. 233-334
  13. Vance E.R., Begg B.D., Day R.A. and Ball C.J. (1995) Zirconolite- rich ceramics for actinide wastes. Scientific Basis for Nuclear Waste Management-XVIIl. MRS Symposia Proceedings, v. 353, Pt. 2, p. 767-774
  14. Yudintsev, S.Y. (2001) Incorporation of U, Th, Zr, and Gd into the garnet-structured host. Proc. of the ICEM'Ol (the 8-th Int. Com. Rad. Waste Mangement and Environ Remed.), ICEM, Brugge, Belgium, Sept. 30-0ct. 04,2001
  15. Yudintsev, S.Y., Lapina, M.l., Ptashikin, A.G., Ioudintseva, T.S. Utsunomiya, S., Wang, L.M. and Ewing, R.C. (2002) Accommodation of Uranium into the Garnet Structure. Pmc. of the MRS Symp., v. 713, JJll. 28. 1-4
  16. Yudintsev, S.Y., Stefanovsky, S.Y. and Ewing, R.C. (2005) Actinide Host Phases as Radioactive Waste Forms (tentative title: unpublished); In Myasoedov, B.R (Ed.) Structural Chemistry of Inorganic Actinide Compounds, Elsevier B.V./Ltd