Leaching Properties on Waste Form with Garnet Structure

석류석 구조를 가진 고화체의 용출 특성

  • Chae Soo-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ryu Kyung-Won (Department of Earth and Environment Science, Chungbuk National University) ;
  • Ioudintseva T.S. (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry) ;
  • Yudintsev S.V. (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry)
  • Published : 2006.04.01

Abstract

Garnet has been suggested as one of the most promising material for the immobilization of radionuclide in high level waste. But data on its chemical durability are sufficiently available. Accordingly, Gd and Ce garnets were synthesized as imitators for $Pu^{3+}\;and\;Pu^{4+}$ were synthesized, and their leaching rates, the parameters of the chemical durability were measured by changing the conditions. In distilled water, the ranges of leaching rates of Gd and Ce were $1.2{\times}10^{-4}{\sim}4.6{\times}10^{-6}g/m^2/day\;and\;7.5{\times}10^{-5}{\sim}1.8{\times}10^{-7}g/m^2/day$, respectively. A comparison with previous data suggests that the chemical durabilities of garnets synthesized from this study are superior to those of other waste forms. Additional leaching experiments were performed with 0.01M-HCl and 0.01M-NaOH solutions to see Gd and Ce leaching at acidic and alkalinity conditions. In 0.01 H-HCl solution, the ranges of leaching rates of Gd and Ce were $2.5{\times}10^{-1}{\sim}6.9{\times}10^{-3}g/m^2/day\;and\;3.7{\times}10^{-1}{\sim}3.1{\times}10^{-3}g/m^2/day$, respectively, while were $3.1{\times}10^{-4}{\sim}1.3{\times}10^{-6}g/m^2/day\;and\;1.8{\times}10^{-3}{\sim}0g/m^2/day$, respectively in 0.01M-NaOH solution. It is believed that leaching data can be used in understanding chemical durabilities of waste from garnets in acidic and alkaline conditions.

고준위 방사성 폐기물에 포함된 핵종을 고정화시킬 수 있는 유망한 물질의 하나인 석류석의 화학적 안정성에 대한 연구결과가 미흡한 실정이다. 따라서 본 연구에서는 3가와 4가의 Pu의 모조제로써 Gd 및 Ce을 함유하고 있는 다양한 조성의 석류석을 합성하여 화학적 내구성의 척도인 용출실험을 실시하였다. 증류수로부터의 Gd과 Ce에 대한 모든 시료의 용출속도가 각각 $1.2{\times}10^{-4}{\sim}4.6{\times}10^{-6}g/m^2/day$, 및 $7.5{\times}10^{-5}{\sim}1.8{\times}10^{-7}g/m^2/day$를 보임으로써 기존의 연구된 고화체에 대한 분석 자료와 비교 시 화학적 내구성이 우수한 것으로 판단되었다. 특히 알칼리 또는 산성조건에서의 용출실험 자료가 전무한 실정인 바, 이를 보완하기 위하여 0.01M-NaOH 및 0.01M-HCl 용액을 사용한 용출실험을 수행하였다. 실험결과, 0.01M-HCl 용액을 이용한 용출실험 결과 얻어진 Gd과 Ce에 대한 모든 시료의 용출속도는 각각 $2.5{\times}10^{-1}{\sim}6.9{\times}10^{-3}g/m^2/day$$3.7{\times}10^{-1}{\sim}3.1{\times}10^{-3}g/m^2/day$였다. 또한 0.01M-NaOH 용액으로부터의 용출속도는 Gd과 Ce의 경우, 각각 $3.1{\times}10^{-4}{\sim}1.3{\times}10^{-6}g/m^2/day$$1.8{\times}10^{-3}{\sim}0g/m^2/day$었다. 결과적으로 이들 산성과 알칼리성 조건에서의 고화체의 용출속도는 차후 고화체의 화학적 내구성에 대한 척도로써 유용하게 사용될 수 있을 것으로 사료된다.

Keywords

References

  1. 채수천, 배인국, 장영남, Yudintsev, S.V. (2004) Ca-Ce-Hf- Ti-O System에서의 피아로클로어 합성. 자원환경지질, 37권, p. 375-381
  2. 채수천, 장영남, 배인국, Yudintsev, S.V. (2003) 고준위 방사성폐기물의 고정화를 위한 Fe-석류석 합성 연구. 한국광물학회지, 16권, p. 307-320
  3. 채수천, 장영남, 배인국, Yudintsev, S.V. (2005) Ca-GdCe- Zr-Fe-O 계에서의 석류석 합성 연구. 자원환경지질, 38권, p. 187-196
  4. 장영남, 채수천, 배인국, Yudintsev, S.V. (2002) 새로운 파이로클로어의 합성 및 결정화학적 특정. 한국광물학회지, 15권, p. 78-84
  5. Burakov B.E. and Anderson, E.B. (1998) Development of Crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute. Proc. of the NUCEF '98 International Conference, JAERI-Conf. 99-004(Part 1), Hitachinaka, Ibaraki, Japan, 16-17/11/98, p. 307-326
  6. Burakov, B.E. and Strykanova, E.E. (1998) Garnet Solid Solution of $Y_3Al_5O_{12}-Gd_3Ga_5O_{12}-Y_3Ga_5O_{12}& (YAG-GGGYGG) as a Prospective Crystalline Host-Phase for Pu Immobilization in the Presence of Ga. Proceedings of the International Conference Waste Management'98, WM conference, Tucson, Arizona, USA, 1-5/03/1998, CD version, http://Jocalhost:6017/html/sess34/34-05/34-05.htm
  7. Burakov, B.E., Anderson, E.B., Knecht, D.A. (1999) Ceramic Forms for Immobilizing Pu Using Zr, Y, Al Metal Additives. Environmental Issues and Waste Management Technologies IV, American Ceramic Society, Westerville, Ohio, p. 349-356
  8. Burakov, B.E., Anderson, E.E., Zamoryanskaya, M.V., and Petrova, M.A. (2000) Synthesis and study of 239Pu-dopedgadolinium-aluminum garnet. Proceedings of Mat. Res. Soc. Symp. Proc., v. 608, p. 419-422
  9. Ewing, R.C., Weber, W.J. and Clinard Jr., W. (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progress in Nuclear Energy, v. 29, p. 63-127 https://doi.org/10.1016/0149-1970(94)00016-Y
  10. Harker, A.B. (1988) Tailored ceramics. In: Radiactive waste forms for the future. Lutze, W. and Ewing, R.C. (Eds.), Elsevier, North-Holland, Amsterdam, Netherlands, p. 335-392
  11. Luo S., Zhu X., Tang B. (1998) Actinides containment by using zirconolite-rich Synroc. In: Proceedings of International Meeting on Nuclear and Hazardous Waste Management (Spectrum 98), American Nuclear Society, La Grange Park, IL, p. 829-833
  12. Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramm, E.J. (1988) Synroc; Radioactive waste forms for the future. Edited by W. Lutze and Ewing, R.C., Elsevier, North-Holland, Amsterdam, Netherlands, p. 233-334
  13. Vance E.R, Begg B.D., Day R.A., Ball C.J. (1995) Zirconolite- rich ceramics for actinide wastes. In: Scientific Basis for Nuclear Waste Management-XVIII. MRS Symposia Proceedings, v. 353, p.767-774
  14. Yudintsev, S.V. (2001) Incorporation of U, Th, Zr, and Gd into the garnet-structured host. Proc. of the ICEM' 01 (the 8-th Int. Conf. Rad. Waste Mangement and Environ. Remed.), ICEM, Brugge, Belgium, Sept. 30-Oct. 04, 2001
  15. Yudintsev, S.V., Lapina, M.J., Ptashkin, A.G., Ioudintseva, T.S., Utsunomiya, S., Wang, L.M. and Ewing, R.C. (2002) Accommodation of Uranium into the Garnet Structure. Proc. of the MRS Symp., Materials Research Society, v. 713, JJ11.28.1-4