• Title/Summary/Keyword: Fe-Al-O

Search Result 1,160, Processing Time 0.028 seconds

FRACTURE TOUGHNESS CHARACTERISTICS IN HIGH ENERGY DENSITY BEAM WELDED JOINT OF HIGH TENSILE STEELS

  • Ro, Chan-Seung;Yamada, Tomoaki;Mochizuki, Masahito;Ishikawa, Nobuyuki;Bang, Han-Sur;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.583-588
    • /
    • 2002
  • The purpose of the study is to evaluate fracture toughness on the Laser and the electron beam welded joints of high tensile steels (HT500, HT550, HT650) by using 3-point bend CTOD and Charpy impact test. WM (weld metal) CTOD tests have been carried out using two kinds of CTOD specimen, the Laser beam welding (108mm length, and 24mm width, and 12mm thickness) and the electron beam welding (l71mm length, and 38mm width, and 19mm thickness). WM Charpy impact specimen is a standard V-notch type, and the temperature of the experiment is changed from -45 to 20 degree of centigrade. FE-analysis is also performed in order to investigate the effect of stress-strain fields on fracture characteristics. Results of the standard V-notch Charpy test are influenced by strength mis-match effect and the absorbed energy vE depends on crack path, and The transition temperature of Laser beam welded joints is more higher than that of electron beam welded joints. Results of the 3-point bend test give low critical CTOD and the crack path is in the weld metal of al specimens. These results indicate fracture toughness characteristics of the welded joints and transition temperature of HT500 are similar both a Laser beam welded joint and an electron beam welded joint. But the fracture toughness and the transition temperature of the electron beam welded joints of HT550 and HT650 are higher than those o the Laser beam welded joints.

  • PDF

Comparison of Livestock Manure Compost and Chemical Fertilizer Application in Distribution of P Fractions at Reclaimed Land Soils

  • Moon, Tae-Il;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.327-334
    • /
    • 2016
  • In order to compare phosphorus (P) behavior of livestock manure compost (LMC) and chemical fertilizer (CF) applied to the sea-reclaimed land soils, incubation experiments were conducted for five weeks. Four soils differing textural classes, sandy loam and clay loam, and electric conductivity (EC) value, high and low, were applied with CF and LMC. LMC was applied at the level of 0, 1, 2, and 3% on the soil weight basis and CF was applied at the same levels of P as LMC. The results showed that increase of P application rate of CF and LMC led to linearly increase available $P_2O_5$ and $0.01M\;CaCl_2$ extractable P contents regardless of soil texture and EC. However, 0.01M $CaCl_2$ extractable P from soil applied with CF was significantly higher than with LMC. Correlation analysis between $0.01M-CaCl_2$ extractable P and fractionated P by different extraction methods showed that $0.01M-CaCl_2$ extractable P positively correlated with KCl-P (soluble and exchangeable P) and HCl-P (Ca and Mg bound P). However, NaOH-P (Fe and Al bound P and organic P) and residual P was adverse. The amount of NaOH-P significantly influenced to the amount of 0.01M $CaCl_2$ extractable P of CF and LMC in the soils. The application of LMC at sandy loam soil could be carried out in the consideration of nutrient leaching and crop uptake.

Hydrochemical characteristics of ground and geothermal waters in the Haeundae hot-spring area, Pusan, Korea (부산 해운대지역 지하수와 지열수의 수리화학적 특성)

  • Shim, Hyong-Soo;Yeong, We-Yeong;Sung, Ig-Hwa;Lee, Byeong-Dae;Cho, Byong-Wook;Hwang, Jin-Yeon
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • Twenty-two water samples(fifteen groundwater and seven geothermal water samples) were collected to elucidate chemical characteristics of the ground and geothermal waters in the Haeundae hot spring area and its vicinity. Major and honor elements were analyzed for ground and geothermal water samples. The concentrations of $K^+$, Na+$, $Ca^{2+}$, $SO_4^{2-}$, $Cl^-$, ^F^-$ and $SiO_2$ were higher in the geothermal water samples than the groundwater samples except $HCO_3^- and Mg^{2+}$ ions. Based on the contents of Fe, Zn, Cu, Al, Mn and Pb, some of the ground and geothermal water samples are contaminated by anthropogenic sources. The ground waters shown on the Piper diagram belong to $Ca-HCO_3$ type, while the geothermal waters Na-Cl type. The graphs of $Cl^-$ versus $Na^+$, $Ca^{2+}, Mg^{2+}, K^+, SO_4^{2-} and HCO_3^-$ indicate that the groundwater is related partly with mineral-water reaction and partly with anthropogenic contamination, while the geothermal water is related with saline water. On the phase stability diagram, groundwater and thermal water mostly fall in the field of stability of kaolinite. This indicates that the ground and geothermal waters proceed with forming kaolinite. Factor and correlation analyses were carried out to simplify the physicochemical data into grouping some factors and to find interaction between them. Based on the Na-K, Na-K-Ca and Na-K-Ca-Mg geothermometers and silica geothermometers, the geothermal reservoir is estimated to have equilibrium temperature between 125${$\mid$circ}C$ and 160${$\mid$circ}C$.

  • PDF

Single-particle Characterization of Aerosol Samples Collected at an Underground Shopping Area (단일입자분석법을 이용한 지하상가에서 채취한 실내입자의 특성분석)

  • Kang, Sun-Ei;Hwang, Hee-Jin;Park, Yu-Myung;Kang, Su-Jin;Kim, Hye-Kyung;Ro, Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.594-603
    • /
    • 2008
  • A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis, was applied to characterize four samples collected at an underground shopping area connected to Dongdeamun subway station, in January and May 2006. Based on the analysis of their chemical compositions of the samples, many distinctive particle types are identified and the major chemical species are observed to be soil-derived particles, iron-containing particles. sulfates. nitrates, and carbonaceous particles. which are encountered both in coarse and fine fractions. Carbonaceous particles exist in carbon-rich and organic. Soil derived particles such as aluminosilicates, AlSi/C, $CaCO_3\;and\;SiO_2$ are more frequently encountered in spring samples than winter samples. Nitrate- and sulfate-con taming particles are more frequently encountered in winter samples, and those nitrate- and sulfate-containing particles mostly exist in the chemical forms of $Ca(CO_3,\;NO_3),\;Ca(NO_3,\;SO_4),\;(Na,\;Mg)NO_3\;and\;(Mg,\;Na)(NO_3,\;SO_4)$. Fe-containing particles which came from nearby subway platform are in the range of about 10% relative abundances for all the samples. It is observed that nitrate- and sulfate-containing particles and carbonaceous particles are much more frequently encountered in indoor aerosol samples than in outdoor aerosols, implying that $NO_x,\;SO_x$, and VOCs at the underground shopping area were more partitioned into aerosol phase.

A geothermal gradient of the upper mantle beneath Jeju-do, Korea: evidence from mantle xenoliths

  • Choi, Seong-Hee;Jwa, Yong-Joo;Lee, Han-Yeang
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.19-19
    • /
    • 2000
  • ;Ultramafic xenoliths found in alkali basalts from Jeju-do, Korea are mostly spinel Iherzolites composed of olivine, orthopyroxene, clinopyroxene and spinel. A subordinate amount of spinel harzburgites and pyroxenites are also found. Temperatures for these xenoliths were estimated from the compositions of coexisting pyroxenes (Wood '||'&'||' Banno 1973; Wells 1977; Bertrand '||'&'||' Mercier 1985; Brey '||'&'||' Kohler 1990), the AI-solubility in orthopyroxene coexisting with olivine and spinel (Sachtleben '||'&'||' Seck 1981; Webb '||'&'||' Wood 1986), and from Fe/Mg partitioning between olivine and spinel (Ballhaus et al. 1991). Temperature estimates from the thermometers by Wells (1977) and Brey and Kohler (1990) are compatible. Average equilibrium temperatures by these two methods for spinel peridotites range from 890 to 1030$^{\circ}$C. Pressures for spinel peridotites were estimated from the geobarometer by Kohler and Brey (1991) derived from the equilibrium Ca content of olivine coexisting with clinopyroxene, and fall within the range of 12.9 to 26.3 kbar. The combination of the thermometer by Brey and Kohler (1990) and the geobarometer by Kohler and Brey (1991) yields P- T estimates for Jeju-do spinel peridotites that fall in experimentally determined spinel lherzolite field in CFMASCr system (O'Neill 1981). These P-T data sets have been used to construct the Quaternary Jeju-do geotherm, which is significantly different from the conventional conductive geotherm. The xenolith-derived geotherm has a higher T gradient at low P (13 kbar) than at high P, which may be due to perturbation of the conductive heat flow by magma underplating or overplating at the crust-mantle boundary. Temperature estimates and statistics on the xenoliths indicate that the crust/mantle boundary in Jeju-do lies at about 11 kbar (~39 km). Spinellherzolite is inferred as a main constituent rock of the uppermost lithospheric mantle beneath Jeju-do. Pyroxenites were intercalated in peridotites in similar depth and temperature as re-equilibrated veins or lens.

  • PDF

The Mineralogical and Geochemical Study on Korean Scheelites and its Application to the Ore Prospecting (한국산 灰重石鑛의 광물학적, 지화학적 연구 및 그의 探査에의 이용)

  • So, Chil-Sup;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.79-93
    • /
    • 1979
  • Twenty five samples of the scheelite-powellite series from twelve Korean tungsten deposits of various geologic settings were studied mineralogically and geochemically. Variations in the trace-element contents of the scheelite minerals are considered in relation to geologic settings and mineralogic properties. Scheelites from ore deposits developed in similar geologic settings and under similar physicochemical conditions are characterized by specific combinations of trace elements.

  • PDF

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • ;Lee, Jae-Hyeon;Choe, Sun-Hyeong;Im, Se-Yun;Lee, Jong-Un;Bae, Yun-Gyeong;Hwang, Jong-Seung;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

A Study on Heavy Metals at the Consumer s Tap in Seoul (서울市 一部 水道栓水中 重金屬에 관한 調査硏究)

  • Lee, Byung Mu
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 1984
  • This study was performed using samples collected at Myungryundong and at Reservoirs. The purpose of this study was to investigate the differences of water quality between tap and raw water, and to analyse drinking water quality by Fe, Zn from corroded galvanized steel pipe. Results were as follows 1. The older the pipe was, the higher the concentration of Ferrum and Zinc was (t-test : p<0.05). Ferrum and Zinc also exceeded the limits in the older galvanized steel pipe. I think that this comes from the corrosion of pipe. 2. Mercury, Arsenic, Cadmium, Lead, Chomium, Argentum and Aurum not detected in raw water were not detected in tap water. Cobalt, Bismuth and Molybudenum detected in raw water were not detected in tap water. I think that this comes from the quality of raw water, the result of water treatment and the improbability of detection of above metals in water delivery system. 3. Silicon measured 2.4698ppm in raw water, but it ranged from 0.4769ppm to 1.982 ppm in tap water. Manganese measured 0.0638ppm in raw water, but it ranged from 0.0026ppm to 0.0198ppm in 17cases(31%) out of 55samples in tap water. I think that this comes from the water treatment. 4. Aluminium not detected in raw water was found in 17 cases (31%) out of the samples (55cases). It may be considered as the use of coagulants $Al_2(SO_4)_3$. $18H_2O$ and PAC (Poly Aluminium Chloride). The concentration of copper in tap water was much higher in 2 cases(3.6%) out of the samples(55) than that of copper in raw water. I think that this may come from the use of ${CuSO}_4$, the preventive of algae growth, and the result of chlorination, but further study must be necoessary to support the proof.

  • PDF

Characteristics of Vanadium Leaching from Basaltic Soils of Jeju Island, Korea (제주도 현무암 기원 토양의 바나듐 용출 특성)

  • Hyun, Ik-Hyun;Yang, Cheol-Shin;Yun, Seong-Taek;Kim, Horim;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.25 no.11
    • /
    • pp.1541-1554
    • /
    • 2016
  • To understand the characteristics of vanadium leaching from soils formed by the weathering of basalts, paleo soil at Gosan, Jeju Island, Korea, and several present-day soils from neighboring areas were collected. Leaching experiments were carried out by two approaches: 1) batch experiments under various geochemical conditions (redox potential (Eh) and pH) and 2) continuous leaching experiments under conditions similar to those of natural environments. From the batch experiments, leached vanadium concentrations were highest under alkaline (NaOH) conditions, with a maximum value of $2,870{\mu}g/L$, and were meaningful (maximum value, $114{\mu}g/L$) under oxidizing ($H_2O_2$) conditions, whereas concentrations under other conditions (acidic-HCl, $neutral-NaHCO_3$, and $reducing-Na_2S_2O_3$) were negligible. This indicated that the geochemical conditions, in which soil-water reactions occurred to form groundwater with high vanadium concentrations, were under alkaline-oxidizing conditions. From the continuous leaching experiments, the pH and leached vanadium concentrations of the solution were in the ranges of 5.45~5.58 and $6{\sim}9{\mu}g/L$, respectively, under $CO_2$ supersaturation conditions for the first 15 days, whereas values under $O_2$ aeration conditions after the next 15 days increased to 8.48~8.62 and $9.7{\sim}12.2{\mu}g/L$, respectively. Vanadium concentrations from the latter continuous leaching experiments were similar to the average concentration of groundwater in Jeju Island ($11.2{\mu}g/L$). Furthermore leached vanadium concentrations in continuous leaching experiments were highly correlated with pH and Al, Cr, Fe, Mn and Zn concentrations. The results of this study showed that 1) alkaline-oxidizing conditions of water-rock (soil) interactions were essential to form vanadium-rich groundwater and 2) volcanic soils can be a potential source of vanadium in Jeju Island groundwater.

AN ATTEMPT TO IMPROVETIDELANDA FORMARINE BIVALVES (2) The physical and chemical compositions of Tapes Philippinarum beds in Kyunggi Bay (해산패류 증식을 위한 간석지 개척에 관한 연구(2) 경기만내 Tapes Philippinarum 서식지 토양의 물리화학적 조성에 관하여)

  • LEE Choonkoo;CHANG Nam Kee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.155-160
    • /
    • 1969
  • The soil textures and chemical compositions of Tapes Philippinarum beds were investigated in order to estimate the grade of the habitat soil of T. Philippinarum for the improvement of natural tidal flats. The coefficients of correlation between tile percentages of debris, coarse sand, fine sand, silt, and clay of the habitat soil, and the population density of T. Philippinarum were 0.78, 0.73, -0.42, -0.68, and -0.51 respectively. And the optimum levels of same were above $13.5\%,\;above\;23.0\%\;below\;41.5\%,\;below\;10.0\%$, and below $6.8\%$ respectively The $SiO_2\;Al_2O_3+Fe_2O_3$ ratio of the soil of T. Philippinarum beds showed the range of 5.09 to 5.60. The levels of soil pH, water holding capacity, organic matter, total nitrogen, available phosphorus, exchangeable magnesium were 6.15-6.60, $4.26-6.86\%$, $0.40-1.10\%$ 14.0-27.0 ppm, $0.041-0.394\%,\;and\;0.009-0.132\%$ respectively.

  • PDF